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Code No. 3392
FACULTY OF ENGINEERING

B.E. I - Semester (Main) Examination, December 2016
Subject : Engineering Mathematics - I

Time : 3 Hours                                                                                               Max. Marks: 70

Note: Answer all questions from Part-A and answer any five questions from Part-B.

PART – A (20 Marks)

1 Convert the matrix
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A into echelon form. (2)

2 Write any two properties of eigen values. (2)

3 Discuss the convergence of the series
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  . (2)

4 Define the terms : (a) absolutely convergent series and
(b) conditionally convergent series (2)

5 Find a point at which the tangent to the curve y = ℓnx is parallel to the chord joining
the point (1, 0) and (e, 1). (2)

6 Expand f(x) = ex sin x in powers of x upto the term x2. (2)

7 Show that
62
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doesn’t exist. (2)

8 If u = 2xy, v = x2 – y2, x= r cos , y = r sin , compute
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 . (2)

9 Compute the gradient of the scalar function f(x, y, z) = exy (x+ y+ z) at (2,1, 1). (2)

10 If f is a differentiable scalar field, then show that  x (f) =


0 . (2)

PART – B (50 Marks)

11 (a) If
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A . Find the eigen values of 3A5 - A4 + A2 + 3I - A-1. (5)

(b) Find the symmetric matrix, index and signature of the quadratic form
yzxzxyzyxQ 222333 222  (5)

12 (a) Test the convergence of the series 
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(b) Examine whether the series ....
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2222
 is absolutely convergent

or conditionally convergent. (5)

13 (a) State Cauchy’s mean value theorem and verify it for the functions f(x) = e-x

and g(x)=ex in [a, b]. (5)
(b) Find all asymptote to the curve (5)
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14 (a) Show that the function (5)
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yxf is not differentiable at (0, 0)

(b) Find the absolute maximum and minimum values for the function
f(x, y) = x2 – y2 – 2y  in the closed region R ; x2 + y2  1 (5)

15 (a) Show that the vector function kxyzjzxyiyzxV ˆ)(ˆ)(ˆ)( 222  is irrotational
and find its scalar potential. (5)

(b) Use Green’s theorem to evaluate the line integral dyyxdxxxy
C

)()( 222  ,

where C is the closed curve of the region bounded by y = x and y = x2. (5)

16 Diagonalize the matrix
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A .                                                                  (10)

17 (a) Discuss the convergence of the series  
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(b)  Find the directional derivative of f(x, y, z) = x2 + y2 + z2 at (1, 2, 3) in the direction of
the vector k6j3i2 ˆˆˆ  . (5)
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