FACULTY OF ENGINEERING

B.E. I - Semester (Main) Examination, December 2016
 Subject : Engineering Mathematics - I

Time : 3 Hours

Max. Marks: 70
Note: Answer all questions from Part-A and answer any five questions from Part-B.

PART - A (20 Marks)

1 Convert the matrix $A=\left(\begin{array}{ccc}0 & 1 & 2 \\ 2 & 0 & 5 \\ -1 & 2 & 3\end{array}\right)$ into echelon form.
2 Write any two properties of eigen values.
3 Discuss the convergence of the series $\sum_{n=1}^{\infty}\left(1+\frac{1}{n^{2}}\right)^{n^{2}}$.
4 Define the terms: (a) absolutely convergent series and
(b) conditionally convergent series

5 Find a point at which the tangent to the curve $y=\ln x$ is parallel to the chord joining the point $(1,0)$ and $(e, 1)$.
6 Expand $f(x)=e^{x} \sin x$ in powers of x upto the term x^{2}.
7 Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{2}+y^{6}}$ doesn't exist.
8 If $\mathrm{u}=2 \mathrm{xy}, \mathrm{v}=\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$, compute $\frac{\partial(u, v)}{\partial(r, \theta)}$.
9 Compute the gradient of the scalar function $\mathrm{f}(x, y, z)=e^{x y}(x+y+z)$ at $(2,1,1)$.
10 If f is a differentiable scalar field, then show that $\nabla \mathrm{x}(\nabla \mathrm{f})=\overrightarrow{0}$.
PART - B (50 Marks)
11 (a) If $A=\left(\begin{array}{ccc}1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right)$. Find the eigen values of $3 A^{5}-A^{4}+A^{2}+3 I-A^{-1}$.
(b) Find the symmetric matrix, index and signature of the quadratic form

$$
\begin{equation*}
Q=3 x^{2}+3 y^{2}+3 z^{2}+2 x y+2 x z-2 y z \tag{5}
\end{equation*}
$$

12 (a) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1.4 .7 \ldots \ldots . .(3 n-2)}{25.8 \ldots(3 n-1)}$.
(b) Examine whether the series $-1+\frac{1}{2^{2}}-\frac{1}{3^{2}}+\frac{1}{4^{2}}-\frac{1}{5^{2}}+\ldots$. is absolutely convergent or conditionally convergent.

13 (a) State Cauchy's mean value theorem and verify it for the functions $f(x)=e^{-x}$ and $g(x)=e^{x}$ in $[a, b]$.
(b) Find all asymptote to the curve

$$
\begin{equation*}
y^{3}-x y^{2}-x^{2} y+x^{3}+x^{2}-y^{2}=0 . \tag{5}
\end{equation*}
$$

14 (a) Show that the function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array} \quad \text { is not differentiable at }(0,0)\right.
$$

(b) Find the absolute maximum and minimum values for the function

$$
\begin{equation*}
f(x, y)=x^{2}-y^{2}-2 y \text { in the closed region } R ; x^{2}+y^{2} \leq 1 \tag{5}
\end{equation*}
$$

15 (a) Show that the vector function $\vec{V}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}$ is irrotational and find its scalar potential.
(b) Use Green's theorem to evaluate the line integral $\oint_{C}\left(x y+x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$, where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.

16 Diagonalize the matrix $A=\left(\begin{array}{ccc}1 & 2 & -2 \\ 2 & 1 & -4 \\ 1 & -1 & -2\end{array}\right)$.

17 (a) Discuss the convergence of the series $\sum\left[\frac{\sqrt{n+1}-\sqrt{n}}{n^{2}}\right]$.
(b) Find the directional derivative of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ at $(1,2,3)$ in the direction of the vector $2 \hat{i}+3 \hat{j}+6 \hat{k}$.

