Code No. 3441

FACULTIES OF ENGINEERING AND TECHNOLOGY

B.E. / B.Tech. (Bridge Course) I – Semester (Backlog) Examination, December 2016

Subject : Engineering Physics (Common to all Branches)

Time : 3 hours

Max. Marks: 75

3

3

2

3

1

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B. PART – A (25 Marks)

- 1 Newton's rings are observed in reflected light of wavelength 5900A⁰. The diameter of the dark ring is 0.5cm. Find the radius of curvature of the lens and the thickness of the corresponding air film. 2 Explain the phenomena of optical activity. 3 2 2 3 Mention few applications of lasers. 4 What are the properties of matter waves? 3 3
- State and explain Bragg's law. 5
- State Hall effect and derive an expression for hall coefficient. 6
- 7 What are different types of dielectric polarizations?
- Distinguish between dia, para and ferromagnetic materials. 8
- Mention few applications of Nano materials. 9
- 10 Match the following [
 - 1 1 Half shade device
 - 2 Pumping process
 - 3 Fermi energy
 - 4 Numerical Aperture
 - i) 1-e; 2-a; 3-c
 - iii) 1-d; 2-a; 3-b

- a) Semiconductor
- b) Optical Fibre
- c) Polarization
- d) Lasers
- e) Interference
- ii) 1-c; 2-d; 3-a; 4-b
- iv) 1 a; 2 b; 3 c; 4 d

PART – B (50 Marks)

11 a)	Explain construction and working of Nicol prism.	5
b)	Discuss Fraunhofer's diffraction at a single slit and explain intensity distribution.	5
12 a)	Explain construction and reconstruction of hologram.	5
b)	Explain propagation of light through optical fibre and define Numerical aperture and acceptance angle.	5
13 a)	Describe Kronig Penny model qualitatively and discuss its conclusions.	5
b)	Find the carrier concentration of electrons in intrinsic semiconductor.	5
14 a)	Explain Weiss domain theory of ferromagnetism and hysteresis variation.	5
b)	Distinguish between Type-I and Type-II superconductors.	5
15 a)	Explain sol-gel method of preparing thin film.	5
b)	Mention few applications of Nano materials.	5
16 a)	Explain construction and working of He-Ne laser.	5
b)	Calculate packing fraction of FCC and BCC.	5
17 a)	Distinguish between soft and hard magnetic materials.	5
b)	Write a note on Auger Electron Process.	5