FACULTY OF ENGINEERING

B.E. I - Semester (Main) Examination, December 2016

Subject : Engineering Physics - I

Max. Marks: 70

(2)

(2)

(2)

Time: 3 Hours

Note: Answer all questions from Part-A and answer any five questions from Part-B. PART – A (20 Marks)

- In Newton's ring experiment, the diameters of the 4th and 12th dark rings are 0.4 cm and 1 0.7 cm respectively. Find the diameter of 20th dark ring. (2)
- 2 The first order diffraction maxima due to a single slit diffraction is at $= 30^{\circ}$ for a light of wavelength 500 mm. Find the width of the slit. (2)
- 3 Describe the Phenomenon of optical activity.
- 4 Distinguish between Spontaneous and stimulated emission of radiation.
- 5 Mention any four applications of an optical fibre.
- (2) 6 Piezo electric method, the velocity of ultransonic waves can be increased by (2) (a) by choosing quartz of low natural frequency
 - (b) by choosing guartz of high natural frequency,
 - (c) Increasing frequency of applied a.c. signal
 - (d) Decreasing frequency of applied a.c. signal
- 7 Define Boltzman's thermodynaical probability and entropy

8	The law which holds good in longer wavelength and fails for shorter wave le	ength is
	known as	(2)
9	Explain the physical significance of wave function Ψ .	(2)

10 State and explain the concept of "Displacement current".

PART- B (50 Marks)

11	(a)	Explain the formation of interference fringes by means of Fresnel's Biprism and derive the expression for fringe width.	(5)
	(b)	Describe the intensity distribution due to a double slit diffraction and explain why missing orders occur in this?	(5)
12	(a) (b)	Explain the construction and working of laurent's half shade polarimeter. Describe the experimental method for operation of a He-Ne gas laser with energy level diagram.	(5) / (5)
13	(a) (b)	Define acceptance angle and numerical aperture. How they are related to the refractive indices of the core and cladding. What are ultrasonic waves? Describe the peizo electric method for production of ultrasonic waves	(5) (5)
14	(a) (b)	Derive the expression for Bose – Einstein's distribution law? Distinguish micro canonical, canonical and grand canonical ensembles.	(5) (5)
15	(a) (b)	Derive the expression for Schroedinger's time independent wave equation Explain Maxwell's equations in integral and differential forms.	(5) (5)
16	(a) (b)	Explain the diffraction due to a single slit and derive the conditions for minimum a maximum intensity. State and explain the recording and reconstruction of Hologram.	nd (5) (5)
17	(a) (b)	Apply the Schrodinger's wave equation to a particle in an infinite square well potential and obtain the expression for energy of particle. A Quantz crystal of thickness 0.005 m is vibrating in resonant condition calculate frequency Given Y for guartz : 7.9×10^{10} N/m ² and $_{0}$ for guartz :	(5)
		2650 kg / m ³ .	(5)