Code No. 3009

FACULTY OF ENGINEERING

B.E. 2/4 I-Semester (Main) Examination, November 2016

Subject : Mathematics - III (Common to All Except I.T. and ECE)
Time : 3 hours
Max. Marks : 75
Note: Answer all questions from Part-A and answer any FIVE questions from Part-B.
PART - A (25 Marks)
1 Eliminate the arbitrary function to obtain a partial differential equation from $z=x y+f\left(x^{2}-y^{2}\right)$.

2 Solve $p^{2} x\left(1+y^{2}\right)=q y$.
3 Find the Fourier half range sine series of the function $f(x)=x+x^{2}, 0<x<1$.
4 Solve $3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0, u(x, 0)=4 e^{-x}$.
5 If $P(A)=0.4, P(B)=0.6, P(A / B)=0.5$ then find $P(B / A)$ and $P(A \cup B)$.
6 A continuous random variable X has the probability density function

$$
f(x)=\left\{\begin{array}{lc}
a+b x, & 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

If the mean of the distribution is $\frac{1}{3}$, find the values of a and b.
7 If X is a Poisson variate such that
$P(X=2)=3 P(X=4)+45 P(X=6)$, then find the mean of X.

8 Define χ^{2} distribution and find its mean.
9 Write normal equations to fit a straight line $y=a+b x$.
10 Two random variables have the regression lines with equations $3 x+2 y=26$ and $6 x$ $+y=31$. Find the mean values \bar{x} and \bar{y}.

PART - B (50 Marks)
11 a) Find the general solution of the partial differential equation $2 x z p+2 y z q=z^{2}-x^{2}-y^{2}$.
b) Find the complete integral of $\left(p^{2}+q^{2}\right) x=p z$ by Charpit's method.

12 Find the Fourier series of the function

$$
f(x)= \begin{cases}0 & \text { if }-\bar{\wedge}, x<0 \\ x^{2} & \text { if } \quad 0 \leq x, \bar{\wedge}\end{cases}
$$

and hence show that $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots \ldots .$.
13 Solve the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0<x<\ell . \quad u(0, t)=u(\ell, t)=0$,
$u(x, 0)=x(\ell-x), \frac{\partial u}{\partial t}(x, 0)=0$.
14 Find the moment generating function of a random variable with pdf $f(x)=\frac{1}{c} e^{-\frac{x}{c}}, 0 \leq x<\infty, c>0$. Hence find its mean and standard deviation.

15 If X is a normal variate with mean 30 and S.D. 5 , then find the probabilities that
i) $26 \leq x \leq 40$
ii) $x \geq 45$
iii) $|x-30|>5$
$(P(0 \leq z \leq 0.8)=0.2881 ; ~ P(0 \leq z \leq 2)=0.4772 \quad P(0 \leq z \leq 1)=0.3413)$.
16 a) Two independent samples of size 7 and 6 have the following values :

Sample A	28	30	32	33	33	29	34
Sample B	29	30	30	24	27	29	-

Examine whether the samples have been drawn from normal populations having the same variance
(Given that value of F at 5% level for $(6,5)$ d.f is 4.95 and for $(5,6)$ d.f is 4.39$)$.
b) Find the mean of Gamma distribution.

17 a) Fit a parabola $y=a+b x+c x^{2}$ to the following data :

X	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

b) If θ is the angle between the two regression lines, then show that

$$
\tan \theta=\frac{1-r^{2}}{r} \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}
$$

Explain the significance when $r \pm 1$.

FACULTY OF ENGINEERING

B.E. 2/4 (ECE) I - Semester (Main) Examination, November / December 2016

Subject : Applied Mathematics

Time : 3 Hours
Max. Marks: 75
Note: Answer all questions from Part-A and answer any five questions from Part-B.

PART - A (25 Marks)

1 Find a partial differential equation by eliminating the arbitrary function from $z=f(\sin x+\cos y)$.
2 Solve p-q = z sin ($x+y$).
3 Determine $\lim _{z \rightarrow 0} \frac{\bar{z}}{z}$, if it exists.
4 Evaluate $\int_{c} \frac{2 z+7}{\left(z^{2}+1\right)(z-9)} d z$ where C is $|\mathrm{z}|=\frac{1}{2}$.
5 If $\mathrm{z}=\mathrm{a}$ is a simple pole of $\mathrm{f}(\mathrm{z})$, prove that the residue of $\mathrm{f}(\mathrm{z})$ at $\mathrm{z}=\mathrm{a}$ is $\lim _{z \rightarrow a}(z-a) f(z)$. (3)
6 Find the image of the region $|z|>1$ under the transformation $w=\frac{i}{z-i}$.
7 Explain Newton-Raphson method.
8 Find the approximate value of $y(0.1)$ for $y^{\prime}=1+y^{2}, y(0)=1$ by Euler's method.
9 Find the normal equations to fit a quadratic curve $y=a+b x+c x^{2}$ for the data.

x	0	1^{\prime}	2	3	4
y	1	1.8	1.3	2.5	6.3

10 If one of the regression coefficients is greater than 1, show that the other regression coefficient is less than 1.

PART - B (50 Marks)

11 (a) Solve $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q-z\left(x^{2}-y^{2}\right)=0$.
(b) Reduce the equation $z^{2}=p q x y$ to the form $F(p . q)=0$ and hence solve it.

12 (a) Show that $u(x, y)=2 x+y^{3}-3 x^{2} y$ is harmonic and find its conjugate harmonic function.
(b) State Cauchy's integral formula and use it to evaluate $\oint_{c} \frac{e^{z}}{z^{2}+1}$ where C is $|z-i|=1$.

13 (a) Find the Laurent series expansion of $f(z)=\frac{z}{(z-1)(z-3)}$ in the region $0<|z-1|<2$.
(b) Evaluate $\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}} d x$.

14 (a) Use Lagrange's interpolation formula to find $f(10)$ from the following data.

x	5	6	0	11
$f(x)$	12	13	14	16

(b) Compute $f^{11}(1.5)$ by Newton's backward formula for the following data:

x	1	1.2	1.4	1.6
$f(x)$	1.01	1.18	1.33	1.56

15 (a) Fit a curve of the form $\mathrm{y}=\mathrm{ae} \mathrm{e}^{\mathrm{bx}}$ to the following data:

x	0.5	1.0	2.0	2.5	3.0
y	0.57	1.46	5.10	7.65	9.20

(b) The ranks of 10 students in two subjects A and B are as follows:

A:	3	5	8	4	7	10	2	1	6	9
B:	6	4	9	8	1	2	3	10	5	7

Find the rank correlation coefficient
16 (a) Solve $p^{2}+q^{2}=1$ by Chapit's method.
(b) Evaluate $\int_{0}^{4+2 i} \bar{z} d z$ along the curve $\mathrm{z}=\mathrm{t}^{2}+\mathrm{it}$.

17 (a) Find the bilinear transformation which maps the points $0,-i,-1$ of the z-plane into the points i, 1, 0 of the w-plane respectively.
(b) Find the regression line of x on y for the following data:

x	1	5	3	2	1	1	7	3
y	6	1	0	0	1	2	1	5

FACULTY OF INFORMATION

B.E. 2/4 (IT) I - Semester (Main) Examination, November / December 2016

Subject : Discrete Mathematics

Time: 3 Hours
Max. Marks: 75
Note: Answer all questions from Part-A and answer any five questions from Part-B. PART-A (25 Marks)

1 Translate the following English sentence into a logical expression:

"You cannot ride the roller coaster if you are under 4 feet tall unless you are older
than 16 years old".

2 Write the Converse, Inverse and Contra positive of the following implication:
"A positive integer is a prime only if it has no divisors other than 1 and itself".
3 State Sum Rule.
4 Seven women and nine men are on the faculty in the Mathematics department of a college. How many ways are there to select a committee of 5 members of the department if atleast one woman and atleast one man must be on the committee?[3]
5 Define Conditional Probability.
6 State the Principle of Inclusion-Exclusion.
7 How many relations are there on a set with ' n ' elements?
8 Define chromatic number of a graph. What is the chromatic number of K_{n} ?
9 Define Strongly and Weakly connected graphs.
10 What is the prefix form of the expression $[(x+2) \uparrow 3]$ * $[y-(3+x)]-5$.

PART- B (50 Marks)

11 (a) Show that the following compound proposition is a tautology.

$$
\begin{equation*}
[(p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)] \rightarrow r \tag{5}
\end{equation*}
$$

(b) Show that $7(p \leftrightarrow q)$ and $7 p \leftrightarrow q$ are logically equivalent.

12 (a) Prove that $\sqrt{2}$ is irrational by giving a proof by contradiction.
(b) If ' n ' is a positive integer then prove that $\sum_{k=0}^{\infty} C(n, k)=2^{n}$.

13 (a) Find the variance and standard deviation of the random variable ' X ' whose value when two dice are rolled is $X[(I, j)]=i+j$, where ' i ' is the number appearing on the first die and ' j ' is the number appearing on the second die.
(b) Find the solution of the Recurrence Relation $a_{n}-6 a_{n-1}+9 a_{n-2}=n \cdot 3^{n}$.

14 (a) If ' m is a positive integer >1 then show that the relation $R=\{(a, b) / a \cong b(\bmod m)\}$ is an equivalence relation on the set of integers.
(b) State and prove Euler's formula on planar graphs.

15 (a) If ' G ' is a connected planar simple graph with ' e ' edges and ' v ' vertices, show that $e \leq 3 v-6$.
(b) Explain Depth First Search algorithm to find a spanning tree with an example. [5]

16 (a) If ' X ' is a random variable on a sample space ' S ' then prove that $V(X)=E\left(X^{2}\right)-[E(X)]^{2}$.
(b) Find the coefficient of X^{10} in $\left(X^{3}+X^{4}+X^{5}+\ldots \ldots\right)^{3}$.

17 (a) The bit strings for the sets $\{1,2,3,4,5\} \&\{1,3,5,7,9\}$ are $1111100000 \& 1010101010$ respectively. Use bit strings to find union and intersection of these sets.
b) Prove that a tree with ' n ' vertices has exactly ($n-1$) edges.

