Max. Marks : 75

FACULTY OF ENGINEERING

B.E. 2/4 I-Semester (Main) Examination, November 2016

Subject : Mathematics – III (Common to All Except I.T. and ECE)

Time: 3 hours

Note: Answer all questions from Part-A and answer any FIVE questions from Part-B.

PART – A (25 Marks)

1	Eliminate the arbitrary function to obtain a partial differential equation from $z = xy + f(x^2 - y^2)$.	3
2	Solve $p^2 x(1+y^2) = qy$.	2
3	Find the Fourier half range sine series of the function $f(x) = x+x^2$, $0 < x < 1$.	3
4	Solve $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$, $u(x, 0) = 4 e^{-x}$.	2
5	If $P(A) = 0.4$, $P(B) = 0.6$, $P(A/B) = 0.5$ then find $P(B/A)$ and $P(A \cup B)$.	3
6	A continuous random variable X has the probability density function $f(x) = \begin{cases} a + bx, & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$	2
	If the mean of the distribution is $\frac{1}{3}$, find the values of a and b.	
7	If X is a Poisson variate such that P(X = 2) = 3P(X = 4) + 45P(X = 6), then find the mean of X.	3
8	Define χ^2 distribution and find its mean.	2
9	Write normal equations to fit a straight line $y = a + bx$.	3
10	Two random variables have the regression lines with equations $3x + 2y = 26$ and $6x + y = 31$. Find the mean values \overline{x} and \overline{y} .	2
	PART – B (50 Marks)	
11	a) Find the general solution of the partial differential equation $2xzp + 2yzq = z^2 - x^2 - y^2$.	5

b) Find the complete integral of $(p^2 + q^2)x = pz$ by Charpit's method. 5

..2

12 Find the Fourier series of the function

$$f(\mathbf{x}) = \begin{cases} 0 & \text{if } -\overline{\wedge}, \, \mathbf{x} < 0 \\ \mathbf{x}^2 & \text{if } 0 \le \mathbf{x}, \,\overline{\wedge} \end{cases}$$

and hence show that $\frac{f^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$

13 Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}, 0 < x < \ell.$ $u(0,t) = u(\ell,t) = 0,$

$$u(x,0) = x(\ell - x), \quad \frac{\partial u}{\partial t}(x,0) = 0.$$

14 Find the moment generating function of a random variable with pdf $f(x) = \frac{1}{c}e^{-\hat{c}}, 0 \le x < \infty, c > 0$. Hence find its mean and standard deviation. 10

15 If X is a normal variate with mean 30 and S.D. 5, then find the probabilities that 10 i) $26 \le x \le 40$ ii) x > 45iii) |x - 30| > 5

$$(\mathsf{P}(0 \le z \le 0.8) = 0.2881 \ ; \quad \mathsf{P}(0 \le z \le 2) = 0.4772 \qquad \mathsf{P}(0 \le z \le 1) = 0.3413).$$

16 a) Two independent samples of size 7 and 6 have the following values :

Sample A	28	30	32	33	33	29	34
Sample B	29	30	30	24	27	29	-

Examine whether the samples have been drawn from normal populations having the same variance

(Given that value of F at 5% level for (6, 5) d.f is 4.95 and for (5, 6) d.f is 4.39).

b) Find the mean of Gamma distribution.

17 a) Fit a parabola $y = a + bx + cx^2$ to the following data :

Х	0	1	2	3	4
у	1	1.8	1.3	2.5	6.3

b) If θ is the angle between the two regression lines, then show that

$$\tan = \frac{1 - r^2}{r} \frac{\frac{1}{r} \frac{1}{r}}{\frac{1}{r} \frac{1}{r} + \frac{1}{r}}$$

Explain the significance when $r \pm 1$.

10

10

5

5

FACULTY OF ENGINEERING

B.E. 2/4 (ECE) I - Semester (Main) Examination, November / December 2016

Subject : Applied Mathematics

Max. Marks: 75

Note: Answer all questions from Part-A and answer any five questions from Part-B.

Time : 3 Hours

PART – A (25 Marks)

1	Find a partial differential equation by eliminating the arbitrary function f from	
	z = f(sinx + cosy).	(3)
2	Solve $p - q = z \sin(x+y)$.	(2)
3	Determine $\lim_{z\to 0} \frac{\overline{z}}{\overline{z}}$, if it exists.	(3)
4	Evaluate $\int_{c} \frac{2z+7}{(z^2+1)(z-9)} dz$ where C is $ z = \frac{1}{2}$.	(2)
5	If $z = a$ is a simple pole of $f(z)$, prove that the residue of $f(z)$ at $z = a$ is $\lim_{z \to a} (z - a) f(z)$.	(3)
6	Find the image of the region $ z > 1$ under the transformation $w = \frac{i}{z-i}$.	(2)
7	Explain Newton-Raphson method.	(3)
8	Find the approximate value of $y(0.1)$ for $y'=1 + y^2$, $y(0) = 1$ by Euler's method.	(2)
9	Find the normal equations to fit a quadratic curve $y = a + bx + cx^2$ for the data.	(3)
	x 0 1' 2 3 4 y 1 1.8 1.3 2.5 6.3	
10	If one of the regression coefficients is greater than 1, show that the other regress	sion
	coefficient is less than 1.	(2)
	PART – B (50 Marks)	

- 11 (a) Solve $x(y^2 z^2)p + y(z^2 x^2)q z(x^2 y^2)=0$. (b) Reduce the equation $z^2 = pqxy$ to the form F(p. q) = 0 and hence solve it. (5) (5)
- 12 (a) Show that $u(x, y) = 2x + y^3 3x^2y$ is harmonic and find its conjugate harmonic function.
 - (b) State Cauchy's integral formula and use it to evaluate $\oint \frac{e^z}{z^2+1}$ where C is |z - i| = 1.

13 (a) Find the Laurent series expansion of $f(z) = \frac{z}{(z-1)(z-3)}$ in the region 0 < |7 - 1| < 2

$$0 < |z - 1| < 2.$$
(5)
(b) Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + 0)(x^2 + 4)^2} dx.$
(5)

(b) Evaluate
$$\int_{0}^{\infty} \frac{x^2}{(x^2+9)(x^2+4)^2} dx$$
. (5)

..2

(5)

(5)

Code No. 3023

..2..

- the points i, 1, 0 of the w-plane respectively. (5) (5)
 - (b) Find the regression line of x on y for the following data:

FACULTY OF INFORMATION

B.E. 2/4 (IT) I - Semester (Main) Examination, November / December 2016

Subject : Discrete Mathematics

Max. Marks: 75

Note: Answer all guestions from Part-A and answer any five guestions from Part-B. PART-A (25 Marks)

Time : 3 Hours

1	Translate the following English sentence into a logical expression:					
	"You cannot ride the roller coaster if you are under 4 feet tall unless you are olde	r				
	than 16 years old".	[2]				
2	Write the Converse, Inverse and Contra positive of the following implication:					
	"A positive integer is a prime only if it has no divisors other than 1 and itself".	[3]				
3	State Sum Rule.	[2]				
4	Seven women and nine men are on the faculty in the Mathematics department of	fa				
	college. How many ways are there to select a committee of 5 members of the					
	department if atleast one woman and atleast one man must be on the committee	?[3]				
5	Define Conditional Probability.	[2]				
6	State the Principle of Inclusion-Exclusion.	[3]				
7	How many relations are there on a set with 'n' elements?	[2]				
8	Define chromatic number of a graph. What is the chromatic number of K_{n} ?	[3]				
9	Define Strongly and Weakly connected graphs.	[2]				
10	What is the prefix form of the expression $[(x+2)^3] \cdot [y - (3 + x)] - 5$.	[3]				
		[0]				
PART- B (50 Marks)						
11	(a) Show that the following compound proposition is a tautology	[5]				
	$[(n \setminus a) \land (n \setminus r) \land (a \setminus r)] \land r$	[0]				
	$[(P \lor q) \land (P \to i) \land (q \to i)] \to i$					

(b) Show that $7(p \leftrightarrow q)$ and $7p \leftrightarrow q$ are logically equivalent. [5]

12 (a) Prove that $\sqrt{2}$ is irrational by giving a proof by contradiction. [5]

- (b) If 'n' is a positive integer then prove that $\sum_{k=0}^{\infty} C(n,k) = 2^n$. [5]
- 13 (a) Find the variance and standard deviation of the random variable 'X' whose value when two dice are rolled is X[(I, j)] = i+j, where 'i' is the number appearing on the first die and 'j' is the number appearing on the second die. [5]
 - (b) Find the solution of the Recurrence Relation $a_n 6a_{n-1} + 9a_{n-2} = n.3^n$. [5]

14 (a) If 'm is a positive integer >1 then show that the relation $R=\{(a, b)/a \cong b \pmod{m}\}$ is an equivalence relation on the set of integers. [5] [5]

- (b) State and prove Euler's formula on planar graphs.
- 15 (a) If 'G' is a connected planar simple graph with 'e' edges and 'v' vertices, show that e 3v – 6. [5]
 - (b) Explain Depth First Search algorithm to find a spanning tree with an example. [5]
- 16 (a) If 'X' is a random variable on a sample space 'S' then prove that $V(X) = E(X^2) - [E(X)]^2$. [5] [5]
 - (b) Find the coefficient of X^{10} in $(X^3 + X^4 + X^5 + \dots)^3$.
- 17 (a) The bit strings for the sets {1,2,3,4,5} & {1,3,5,7,9} are 1111100000 & 10101010 respectively. Use bit strings to find union and intersection of these sets. [5] b) Prove that a tree with 'n' vertices has exactly (n-1) edges. [5]
 - *****