FACULTY OF ENGINEERING

B.E. I – Year (Suppl.) Examination, December 2016

Subject : Mathematics - I

Time : 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

1 Examine the convergence of the series
$$\sum \left(1 + \frac{1}{2^n}\right)^{2^n}$$
.
2 State Logarithmic test.
3 Expand $f(x) = e^{\sin nx}$ in Maclaurin's series up to the term x^2 .
4 Find the intervals in which the curve $y = x + \frac{1}{x}$ is concave up or concave down.
5 Prove that $\lim_{(x,y)\to(0,0)} x^2 + y^2 = 0$.
6 If $z = \log(u^2 + v) = e^{x^2 + y^2}$, $v = x^2 + y$ find $\frac{\partial z}{\partial x}$ at $(1, 0)$.
7 Prove that curl (grad f) = $\overline{0}$, where f is a differentiable scalar field.
8 In what direction from $(3, 1, 2)$ is the directional derivative of $f(x, y, z) = xy^2 z^3$
9 Determine whether the vectors $(1, 2, 3)$, $(1, 0, 0)$, $(0, 0, 1)$ are linearly dependent.
10 If $A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 5 \\ 0 & 0 & -3 \end{pmatrix}$, find its spectrum and spectral radius.
2 $\frac{\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 \dots (3n-2)}{2 \cdot 5 \cdot 8 \dots (3n-1)}$
b) Discuss the convergence of the series $\sum \frac{\cos^2 nx}{n\sqrt{n}}$
11 a) State and prove Rolle's theorem.
b) Find the envelope of all ellipses $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ which have a constant area $A = ab$.

5

5

- 13 a) Prove that $f(x,y) = \sqrt{x^2 + y^2}$ is not differentiable at (0, 0). b) Find the local maximum and minimum values
 - b) Find the local maximum and minimum values of $f(x,y) = x^3 + 3xy^2 15x^2 15y^2 + 72x$.
- 14 Verify Stoke's theorem for the vector field $\overline{F} = (2x y)i yz^2j y^2zk$ over the upper half surface of $x^2 + y^2 + z^2 = 1$ bounded by its projection on the xy plane. 10
- 15 a) Determine the value of k for which the matrix
 - $A = \begin{pmatrix} 6 & 3 & 5 & 9 \\ 5 & 2 & 3 & 6 \\ 3 & 1 & 2 & k \end{pmatrix}$ is of rank 3.
 - b) Find the values of λ so that the equations x + y + z = 1, $2x + y + 4z = \lambda$, $4x + y + 10z = \lambda^2$ have a solution and solve them completely in each case. 5
- 16 a) Find all the asymptotes to the curve $y^3 xy^2 x^2y + x^3 + x^2 y^2 = 0.$ 5
 - b) Evaluate $\iint_{R} e^{-(x^2+y^2)} dx dy$, by changing to polar coordinates, where R is the region $x^2 + y^2 = 9$, by changing to polar coordinates. 5
- 17 Diagonalize the matrix $A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{pmatrix}$ and obtain its modal matrix. 10
