## FACULTY OF ENGINEERING

## B.E. I - Year (Suppl.) Examination, December 2016 <br> Subject : Mathematics - I

Time : 3 hours
Max. Marks : 75

## Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART - A (25 Marks)
1 Examine the convergence of the series $\sum\left(1+\frac{1}{2^{\mathrm{n}}}\right)^{2^{\mathrm{n}}}$.
2 State Logarithmic test.
3 Expand $f(x)=e^{\sin x}$ in Maclaurin's series upto the term $x^{2}$.
4 Find the intervals in which the curve $y=x+\frac{1}{x}$ is concave up or concave down.
5 Prove that $\lim _{(x, y) \rightarrow(0,0)} x^{2}+y^{2}=0$.
6 If $z=\log \left(u^{2}+v\right) u=e^{x^{2}+y^{2}}, v=x^{2}+y$ find $\frac{\partial z}{\partial x}$ at $(1,0)$.
7 Prove that curl $(\operatorname{grad} \mathrm{f})=\overline{0}$, where f is a differentiable scalar field.
8 In what direction from (3, 1, -2) is the directional derivative of $f(x, y, z)=x y^{2} z^{3}$ maximum?
9 Determine whether the vectors $(1,2,3),(1,0,0),(0,0,1)$ are linearly dependent.
10 If $\mathrm{A}=\left(\begin{array}{ccc}1 & 2 & -1 \\ 0 & -1 & 5 \\ 0 & 0 & -3\end{array}\right)$, find its spectrum and spectral radius.
PART - B (50 Marks)
11 a) Test the convergence of the series

$$
\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 \ldots \ldots \ldots . .(3 n-2)}{2 \cdot 5 \cdot 8 \ldots \ldots \ldots . .(3 n-1)}
$$

b) Discuss the convergence of the series $\sum \frac{\cos ^{2} n x}{n \sqrt{n}}$

12 a) State and prove Rolle's theorem.
b) Find the envelope of all ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which have a constant area $A=\pi a b$.

13 a) Prove that $f(x, y)=\sqrt{x^{2}+y^{2}}$ is not differentiable at $(0,0)$.
b) Find the local maximum and minimum values of

$$
f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x
$$

14 Verify Stoke's theorem for the vector field $\bar{F}=(2 x-y) i-y z^{2} j-y^{2} z k$ over the upper half surface of $x^{2}+y^{2}+z^{2}=1$ bounded by its projection on the $x y$ plane.

15 a) Determine the value of $k$ for which the matrix

$$
\mathrm{A}=\left(\begin{array}{cccc}
6 & 3 & 5 & 9 \\
5 & 2 & 3 & 6 \\
3 & 1 & 2 & \mathrm{k}
\end{array}\right) \text { is of rank } 3
$$

b) Find the values of $\lambda$ so that the equations $x+y+z=1,2 x+y+4 z=\lambda$, $4 x+y+10 z=\lambda^{2}$ have a solution and solve them completely in each case.

16 a) Find all the asymptotes to the curve $y^{3}-x y^{2}-x^{2} y+x^{3}+x^{2}-y^{2}=0$
b) Evaluate $\iint_{R} \mathrm{e}^{-\left(x^{2}+y^{2}\right)} \mathrm{dx} d y$, by changing to polar coordinates, where $R$ is the region $x^{2}+y^{2} \leq 9$, by changing to polar coordinates.

17 Diagonalize the matrix $A=\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 3\end{array}\right)$ and obtain its modal matrix.

