FACULTY OF ENGINEERING

B.E. I - Year (Suppl.) Examination, November / December 2016 Subject : Mathematics - II

Time : 3 hours
Max. Marks : 75
Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.
PART - A (25 Marks)
1 Find an integrating factor of $x d y-y d x+y^{2} d x=0$.
2 Solve $\frac{d y}{d x}+x y=2 x$.
3 Determine whether the functions $x^{2}, \frac{1}{x^{2}}$ are linearly independent on $(0, \infty)$.
4 Find the complementary function of $y^{\prime \prime}-y=x \sin x$.
5 Define ordinary and singular points.
6 Prove that $P_{n}(-x)=(-1)^{n} P_{n}(x)$.
7 Evaluate $\int_{0}^{\pi / 2} \frac{1}{\sqrt{\sin x}} d x$ using Beta and Gamma functions.
8 Write the solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0$ in terms of Bessel functions.
9 Find L\{t $\left.\mathrm{e}^{-\mathrm{t}}\right\}$.
10 Find $L^{-1}\left\{\frac{e^{-2 s}}{s^{2}-4}\right\}$.
PART - B (50 Marks)
11 a) Solve $y^{2} d x+\left(x^{2}-x y-x^{2}\right) d y=0$.
b) Show that the family of curves $y^{2}=4 a(a+x)$, a being parameter, is self orthogonal.

12 a) Find the general solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=\ell n x$.
b) Solve the system equations $\frac{d x}{d t}=y, \frac{d y}{d t}=-9 x$.

13 a) Express $x^{3}-3 x^{2}-2 x+7$ in terms of Legendre Polynomials $P_{n}(x)$. 5
b) Prove that $n P_{n}(x)+P_{n-1}^{1}(x)=x P_{n}^{1}(x)$. 5

14 a) Prove that $\beta(m, n)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x$.
b) Prove that $J_{-5 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left[\frac{\left(3-x^{2}\right) \cos x}{x^{2}}+\frac{3 \sin x}{x}\right]$.

15 a) Find $L\{f(t)\}$, where $f(t)=\left\{\begin{array}{ll}t, & 0<t<1 \\ 0, & 1<t<2\end{array}\right.$ and $f(t+2)=f(t)$.
b) Apply convolution theorem to find $\operatorname{L}^{-1}\left\{\frac{1}{(\mathrm{~s}-1)(\mathrm{s}+2)}\right\}$.

16 a) A radioactive substance disintegrates at a rate proportional to its mass. When mass is 10 mgm , the rate of disintegration in 0.051 mgm per day. How long will it take for the mass to reduce from 10 to 5 mgm ?
b) Solve $y^{\prime \prime}-y=e^{2 x}$ by the method of variation of parameters.

17 a) Find the power series solution of $y^{\prime}-2 y=0$ about $x=0$.
b) Using the generating function, prove that
i) $\cos (x \sin \theta)=J_{0}(x)+2 J_{2}(x) \cos 2 \theta+J_{4}(x) \cos 4 \theta+$ \qquad and
ii) $\sin (x \sin \theta)=2 J_{1}(x) \sin \theta+2 J_{3}(x) \sin 3 \theta+\ldots \ldots \ldots .$.

