FACULTY OF ENGINEERING

B.E. 4/4 (Civil) I - Semester (OTC) Examination, December 2016

Subject : Matrix Methods and Numerical Techniques
Time : 3 hours
Max. Marks : 75
Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.
PART - A (25 Marks)
1 When the condition of compatibility is used in the structural analysis? 2
2 Explain convergence of iterative methods.
3 Draw the released structure for a fixed beam.
4 What is the static indeterminacy of the pin jointed plane frame shown in Fig.1?

Figure 1
5 Find the degree of freedom for the pin jointed plane frame shown in Fig.1. 2
6 For the analysis of continuous beam shown in Fig.2, which method we prefer, flexibility or stiffness? Explain why?
7 What is a nonlinear equation? Give an example.
8 Write a first order ordinary differential equation and mention any two methods to solve it numerically.
9 Give any two examples of elliptical equations and write the equations.
10 Classify the following partial differential equation $u_{x x}+2 u_{x y}+u_{y y}=0$.
PART - B (50 Marks)
11 Solve the following equations by Jacobi's iterative method.

$$
\begin{aligned}
& 3 x+20 y-z=-18 \\
& 2 x-3 y+20 z=25 \\
& 20 x+y-2 z=17
\end{aligned}
$$

12 Analyse the continuous beam shown in Fig. 2 using force method and draw the bending moment diagram. Assume EI is same for all the spans.

13 Analyse the frame shown in Fig. 3 using stiffness method and draw the bending moment diagram.

14 Solve the equation $x^{3}-5 x+3=0$ by using the bisection method.
15 Solve the Poisson's equation $\nabla^{2} u=8 x^{2} y^{2}$ for the square mesh shown in Fig. 4 with $u(x, y)=0$ on the boundary and meshlength $=1$.

Figure 4

16 a) Use trapezoidal rule to evaluate $\int_{0}^{1} x^{3} d x$ considering five sub-intervals.
b) Develop the stiffness matrix for the beam shown in Fig.5. EI is uniform.

Figure 5
17 Explain the following:
a) Static and Kinematic indeterminacies
b) Gauss elimination method
c) Newton-Raphson method

