# FACULTY OF ENGINEERING

## B.E. 2/4 (Civil) I - Semester (Old) Examination, December 2015

# Subject : Mathematics – III (Common to All Except I.T./ ECE)

### Time : 3 Hours

## Max. Marks: 75

# Note: Answer all questions from Part-A and answer any five questions from Part-B.

# PART – A (25 Marks)

| 1  | Form the differential equation by eliminating the arbitrary function 'f' and 'g' from                                                                   |              |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 2  | Z = y f(x) + x g(y)<br>Solve $x^2 p^2 + y^2 q^2 - z^2$                                                                                                  | (3)          |
| 3  | Find an in the Fourier series expansion of $f(x) = x^2$ in (- , ).                                                                                      | (2)          |
| 4  | Write Dirichlet's conditions.                                                                                                                           | (2)          |
| 5  | Solve $\sqrt{p} + \sqrt{q} = 2x$ .                                                                                                                      | (3)          |
| 6  | Solve $\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y}$ .                                                                                      | (2)          |
| 7  | Apply Euler's method to find $y(0.4)$ for $y^1 = x + y$ , $y(0) = 0$ choosing the scap                                                                  | ( <b>2</b> ) |
| 8  | If $f(4) = 7$ , $f(6) = 13 f(0) = 14$ , $f(12) = 10$ . Find $f(11)$ .                                                                                   | (3)<br>(2)   |
| 9  | Find $Z - Transform of sin (3n+5).$                                                                                                                     | (3)          |
| 10 | State and prove the initial value theorem.                                                                                                              | (2)          |
|    | PART – B (50 Marks)                                                                                                                                     |              |
| 11 | (a) Solve $(x^2 - y^2 - z^2) p + 2xyz = 2xz$ .<br>(b) Solve $r = t \cos^2 x + p \tan x = 0$ by Monse's method                                           | (5)<br>(5)   |
|    | (b) Solve $T = T \cos x + p \tan x = 0$ by Monse's method.                                                                                              | (5)          |
| 12 | If $f(x) =  \cos x $ , then expand $f(x)$ as a Fourier series in the interval $(-\Pi, \Pi)$ .                                                           | (10)         |
| 13 | The ends A and B of a rod 20 cm long have the temperature at 30°C and 80°C until                                                                        |              |
|    | steady-state prevails. The temperature of the ends are changed to 40°C and 60°C respectively. Find the temperature distribution in the rod at time 't'. | (10)         |
|    |                                                                                                                                                         | (10)         |
| 14 | (a) Solve the system of equations<br>2x + 2y + 2 = 12 $2x + 2y + 2 = 8$ $5x + 10y = 8z = 10$ by Cause Condition                                         | (5)          |
|    | 2x + 2y + 2 = 12, 3x + 2y + 22 = 3, 3x + 10y = 32 = 10 by Gauss = Condition method.                                                                     |              |
|    | (b) Solve the differential equation $\frac{dy}{dx} = x + y$ using Runge-Kutta method of fourth of                                                       | order        |
|    | for $x = 0.2$ with initial conditions $y(0) = 1$                                                                                                        | (5)          |
|    | y(0) = 1                                                                                                                                                | (0)          |
| 15 | (a) Find the inverse Z – transform of $2(z^2-5z + 6.5) / [(z-2) (z-3)^2]$ for $2 <  z  < 3$ .                                                           | (5)          |
|    | (b) State and prove convolution theorem.                                                                                                                | (5)          |
| 16 | Solve $p(p^2+1)+(b-z)q=0$ by Charpit's method.                                                                                                          | (10)         |
| 17 | (a) Find the Halfrange sine Fourier series expansion of $f(x)=x^2$ in (0, $\Pi$ ).                                                                      | (5)          |
|    | (b) Find $\frac{dy}{dx}$ at x = 1.3 from the following table:                                                                                           |              |
|    | $\begin{bmatrix} ax \\ x & 1 & 3 & 5 & 7 \end{bmatrix}$                                                                                                 |              |
|    | y 10 17 24 29                                                                                                                                           |              |

# FACULTY OF ENGINEERING

#### B.E. 2/4 I - Semester (New)(Main) Examination, December 2015

### Subject : Mathematics – III (Common to All Except. I.T./ ECE)

#### Time : 3 Hours

Max. Marks: 75

# Note: Answer all questions from Part-A and answer any five questions from Part-B.

### PART – A (25 Marks)

| 1  | From a partial differential equation by eliminating arbitrary constants a and b from                                                                                                         |            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|    | z = a(x+y)+b.                                                                                                                                                                                | (2)        |
| 2  | Solve $p^2 - q^2 = x - y$ .                                                                                                                                                                  | (3)        |
| 3  | Define odd and even functions with an example.                                                                                                                                               | (2)        |
| 4  | Solve by the method of separation of variables $\frac{\partial z}{\partial x} - 2\frac{\partial z}{\partial y} - z = 0$ , where z (x, 0)=6e <sup>-3x</sup> .                                 | (3)        |
| 5  | State Baye's theorem.                                                                                                                                                                        | (2)        |
| 6  | If X is a continuous random variable and b is a constant then show that                                                                                                                      |            |
| -  | $Var(bX)=b^2Var(X).$                                                                                                                                                                         | (3)        |
| 1  | Find mean of Poisson distribution.                                                                                                                                                           | (2)        |
| 8  | vvrite any two applications of $\chi^-$ test.                                                                                                                                                | (3)        |
| 9  | The lines of regression in a bivariate distribution are $x + 9y = 7$ and $y + 4x = \frac{49}{3}$ . Find                                                                                      | d          |
|    | coefficient of correlation.                                                                                                                                                                  | (2)        |
| 10 | Fit a straight line for the following data:                                                                                                                                                  | (3)        |
|    | x 0 1 2 3<br>y 1 2 2 3                                                                                                                                                                       |            |
|    | PART – B (50 Marks)                                                                                                                                                                          |            |
| 11 | (a) Solve $p + q + 2xz = 0$ .                                                                                                                                                                | (5)        |
|    | (b) Solve by Charpit's method $px + pq + qy = yz$ .                                                                                                                                          | (5)        |
| 12 | (a) Obtain the Fourier series to represent                                                                                                                                                   | (5)        |
|    | $\begin{bmatrix} 0, & -x < x < 0 \end{bmatrix}$                                                                                                                                              |            |
|    | $f(x) = \left\{\frac{fx}{4},  0 < x < f\right\}$                                                                                                                                             |            |
|    | (b) Find half range consine series for $f(x) = \pi - x$ in the interval $0 < x < \pi$ .                                                                                                      | (5)        |
| 13 | <ul> <li>(a) If the first four moments of a distribution about a value 5 are equal to -4, 22, -177 and 560. Determine moments about mean.</li> <li>(b) Given the following table.</li> </ul> | (5)<br>(5) |
|    |                                                                                                                                                                                              |            |

|   | х       | -3    | -2       | -1   | 0 | 1    | 2    | 3    |
|---|---------|-------|----------|------|---|------|------|------|
|   | P(x)    | 0.05  | 0.10     | 0.30 | 0 | 0.30 | 0.15 | 0.10 |
| 1 | v) (ii) | E(2+3 | v) (iii) |      |   |      |      |      |

Compute (i)  $E(\overline{x})$  (ii) E(2+3x) (iii) V(x)

- 14 (a) In a book of 520 pages, 390 typo-graphical errors occur. Assuming Poisson Law for the number of errors per page. Find the probability that a random sample of 5 pages will have no errors.
  - (b) Find MGF of normal distribution.

(5)

..2

15 (a) Find regression line of y on x for following data:

| Х | 1 | 3 | 4 | 5  | 7  | 8  | 10 |
|---|---|---|---|----|----|----|----|
| У | 2 | 6 | 8 | 10 | 14 | 16 | 20 |

(b) Fit a second degree parabola for following data:

| Х | 2  | 4  | 6  | 8  |
|---|----|----|----|----|
| У | 25 | 38 | 56 | 84 |

- 16 A string is stretched and fastened to two points apart. Motion is started by displacing the string into the form y = 2(sinx + sin3x) from which it is released at time t = 0. Find the displacement of any point on the string at a distance of x from one end at time t. (10)
- 17 (a) A random sample of 10 boys had the following I.Q's : 70, 120, 110, 101, 88, 83, 95, 98, 107, 100. Do these data support assumption of population mean I.Q of 100? (5)
  (b) Find the angle between two regression lines. (5)

(5)

(5)

# FACULTY OF ENGINEERING

## B.E. 2/4 (ECE) I - Semester (New)(Main) Examination, December 2015

# Subject : Applied Mathematics

### Time : 3 Hours

#### Max. Marks: 75

Note: Answer all questions from Part-A and answer any five questions from Part-B.

# PART – A (25 Marks)

| 1       | Form a partial differential equation by eliminating arbitrary constants a and b from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| ~       | $(x - a)^{2} + (y - b)^{2} + z^{2} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2)                            |
| 2       | Find the complete integral of pq ( $px + qy - z$ ) = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3)                            |
| ა       | Find the values of a, b, c, d such that the function $f(z) = x^2 + ayy + by^2 + i(ay^2 + dyy + y^2)$ is applytic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2)                            |
| 4       | f(z) = x + axy + by + f(cx + uxy + y) is analytic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)<br>(2)                     |
| 4       | Evaluate $\oint_{c} z  dz$ , where C ii $ z - z  = 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3)                            |
| 5       | Find the zeros and singularities of $f(z) = \tan z$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2)                            |
| 6       | Determine whether the function of $f(z) = \overline{Z}$ is conformal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3)                            |
| 7       | Derive iterative formula to find $N^{1/n}$ where N > 0 and n is a positive integer, using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0)                            |
|         | Newton-Raphson method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2)                            |
| 8       | Find the Lagrange interpolating polynomial that fits the following data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3)                            |
|         | x 0 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |
|         | f(x) 2 1 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |
| ~       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\langle \mathbf{O} \rangle$   |
| 9<br>10 | Define correlation and regression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)                            |
| 10      | If the angle between two regression lines, standard deviation of Y is twice the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2)                            |
|         | standard deviation of $X$ and $T = 0.25$ , find $\tan \theta$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (3)                            |
|         | PART – B (50 Marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |
| 11      | (a) Solve $y^2p - xy q = x (z - 2y)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (5)                            |
|         | (b) Solve $2z + p^2 + qy + 2y^2 = 0$ by Charpit's method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (5)                            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| 12      | (a) Show that $f(z) = \frac{(\overline{z})^2}{z \neq 0}$ $f(0)=0$ satisfies Cauchy-Riemann equations at (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0)                             |
| 12      | (a) Show that $f(z) = \frac{(\overline{z})^2}{z}, z \neq 0$ , $f(0)=0$ , satisfies Cauchy-Riemann equations at (0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0)                             |
| 12      | (a) Show that $f(z) = \frac{(\overline{z})^2}{z}, z \neq 0$ , $f(0)=0$ , satisfies Cauchy-Riemann equations at (0, but not differentiable there.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0)<br>(5)                      |
| 12      | <ul> <li>(a) Show that f(z) = (z)<sup>2</sup>/z, z ≠ 0, f(0)=0, satisfies Cauchy-Riemann equations at (0, but not differentiable there.</li> <li>(b) Evaluate i (z<sup>3</sup>+z+1)/(z, where C is the ellipse 4x<sup>2</sup> + 9y<sup>2</sup> = 1 using Cauchy's</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0)<br>(5)                      |
| 12      | <ul> <li>(a) Show that f(z) = (z)<sup>2</sup>/z, z ≠ 0, f(0)=0, satisfies Cauchy-Riemann equations at (0, but not differentiable there.</li> <li>(b) Evaluate ∮ (Z<sup>3</sup> + Z + 1)/(Z<sup>2</sup> - 7Z + 2) dz, where C is the ellipse 4x<sup>2</sup> + 9y<sup>2</sup> =1 using Cauchy's</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0)<br>(5)                      |
| 12      | <ul> <li>(a) Show that f(z) = (z)<sup>2</sup>/z, z ≠ 0, f(0)=0, satisfies Cauchy-Riemann equations at (0, but not differentiable there.</li> <li>(b) Evaluate ∮ (z<sup>3</sup>+Z+1)/(z<sup>2</sup>-7Z+2) dz, where C is the ellipse 4x<sup>2</sup> + 9y<sup>2</sup> =1 using Cauchy's integral formula.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0)<br>(5)<br>(5)               |
| 12      | <ul> <li>(a) Show that f(z) = (z)<sup>2</sup>/z, z ≠ 0, f(0)=0, satisfies Cauchy-Riemann equations at (0, but not differentiable there.</li> <li>(b) Evaluate ∫ (z<sup>3</sup>+Z+1)/(z<sup>2</sup>-7Z+2) dz, where C is the ellipse 4x<sup>2</sup> + 9y<sup>2</sup> =1 using Cauchy's integral formula.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0)<br>(5)<br>(5)               |
| 12      | <ul> <li>(a) Show that f(z) = (z)<sup>2</sup>/z, z ≠ 0, f(0)=0, satisfies Cauchy-Riemann equations at (0, but not differentiable there.</li> <li>(b) Evaluate ∮ (Z<sup>3</sup> + Z + 1)/(Z<sup>2</sup> - 7Z + 2) dz, where C is the ellipse 4x<sup>2</sup> + 9y<sup>2</sup> = 1 using Cauchy's integral formula.</li> <li>(a) Find the Laurent's series expansion of f(z) = (Z<sup>2</sup> - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2 - 1)/(2</li></ul> | 0)<br>(5)<br>(5)               |
| 12      | <ul> <li>(a) Show that f(z) = (z)<sup>2</sup>/z, z ≠ 0, f(0)=0, satisfies Cauchy-Riemann equations at (0, but not differentiable there.</li> <li>(b) Evaluate ∮ (Z<sup>3</sup>+Z+1)/(Z<sup>2</sup>-7Z+2) dz, where C is the ellipse 4x<sup>2</sup> + 9y<sup>2</sup> =1 using Cauchy's integral formula.</li> <li>(a) Find the Laurent's series expansion of f(z) = (Z<sup>2</sup>-1)/(Z<sup>2</sup>+5Z+6) in the region</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0)<br>(5)<br>(5)               |
| 12      | <ul> <li>(a) Show that f(z) = (z)<sup>2</sup>/z, z ≠ 0, f(0)=0, satisfies Cauchy-Riemann equations at (0, but not differentiable there.</li> <li>(b) Evaluate ∫ (Z<sup>3</sup> + Z + 1)/(Z<sup>2</sup> - 7Z + 2) dz, where C is the ellipse 4x<sup>2</sup> + 9y<sup>2</sup> =1 using Cauchy's integral formula.</li> <li>(a) Find the Laurent's series expansion of f(z) = (Z<sup>2</sup> - 1)/(Z<sup>2</sup> + 5Z + 6) in the region 2 &lt;  z  &lt; 3.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0)<br>(5)<br>(5)<br>(5)        |
| 12      | <ul> <li>(a) Show that f(z) = (z)<sup>2</sup>/z, z ≠ 0, f(0)=0, satisfies Cauchy-Riemann equations at (0, but not differentiable there.</li> <li>(b) Evaluate ∮ (Z<sup>3</sup> + Z + 1)/(Z<sup>2</sup> - 7Z + 2) dz, where C is the ellipse 4x<sup>2</sup> + 9y<sup>2</sup> =1 using Cauchy's integral formula.</li> <li>(a) Find the Laurent's series expansion of f(z) = (Z<sup>2</sup> - 1)/(Z<sup>2</sup> + 5Z + 6) in the region 2 &lt;  z  &lt; 3.</li> <li>(b) Use residue theorem to evaluate the integral (Cos x)/(Z<sup>2</sup> + 5Z + 6) in the region 2 &lt;  z  &lt; 3.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0)<br>(5)<br>(5)<br>(5)<br>(5) |
| 12      | <ul> <li>(a) Show that f(z) = (z)<sup>2</sup>/z, z ≠ 0, f(0)=0, satisfies Cauchy-Riemann equations at (0, but not differentiable there.</li> <li>(b) Evaluate ∫ (Z<sup>3</sup> + Z + 1)/(Z<sup>2</sup> - 7Z + 2) dz, where C is the ellipse 4x<sup>2</sup> + 9y<sup>2</sup> = 1 using Cauchy's integral formula.</li> <li>(a) Find the Laurent's series expansion of f(z) = (Z<sup>2</sup> - 1)/(Z<sup>2</sup> + 5Z + 6) in the region 2 &lt;  z  &lt; 3.</li> <li>(b) Use residue theorem to evaluate the integral ∫ (x<sup>2</sup> + 1)(x<sup>2</sup> + 4)/(x<sup>2</sup> + 4) dx.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0)<br>(5)<br>(5)<br>(5)<br>(5) |

..2

(5)

(5)

(5) (5)

14 (a) Find  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$  at x = 0 from the following data:

| Х | 0 | 1 | 2  | 3 | 4 | 5 |
|---|---|---|----|---|---|---|
| у | 4 | 8 | 16 | 7 | 6 | 2 |

(b) Apply Euler's method to find the approximate value of

y(0.3) if 
$$\frac{dy}{dx} = x^2 + y^2$$
, y(0)=1, taking h = 0.1. (5)

15 (a) Calculate the coefficient of correlation between X and Y for the following data: (5)

| Х | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
|---|---|---|---|---|---|---|---|--|
| Υ | 3 | 4 | 5 | 3 | 8 | 6 | 7 |  |
|   |   |   |   |   |   |   |   |  |

(b) Fit a curve of the form  $f(x)=ae^{bx}$  to the data :

| Х    | 0.5  | 1    | 2    | 2.5  | 3    |
|------|------|------|------|------|------|
| f(x) | 0.57 | 1.46 | 5.10 | 7.65 | 9.20 |

- 16 (a) Solve  $x^2p^2 + y^2q^2 = z^2$ . (b) Obtain Cauchy – Riemann equations in polar form.
- 17 (a) Find the image of the region  $x \ge 2$  under the mapping  $\check{S} = \frac{4z+1}{z-2-i}$ . (5)

\*\*\*\*\*

(b) Perform the first three approximations of bisection method to solve  $xe^{x} - 1 = 0$ . (5)

# **FACULTY OF INFORMATICS**

## B.E. 2/4 (IT) I - Semester (Old) Examination, December 2015

## Subject : Discrete Mathematics

#### Time : 3 hours

### Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

# PART – A (25 Marks)

| 1  | Define proposition. Construct truth table for $P \rightarrow (Q \rightarrow R)$ .                                                                                                                                    | 3 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2  | Define quantifier. Show that $(\forall x) (P(x)) \rightarrow (\exists x) (P(x))$ is a logically valid statement.                                                                                                     | 3 |
| 3  | Define equivalence relation. If $\{\{1, 2, 3\}, \{2, 4\}\}$ is a partition set of the set A = $\{1, 2, 3, 4, 5\}$ . Determine the corresponding relation.                                                            | 3 |
| 4  | <ul><li>How many 3 digit numbers can be formed using the digits 5, 7, 9, 1, if</li><li>a) a digit cannot appear more than once in a number.</li><li>b) any digit may appear any number of times in number.</li></ul> | 3 |
| 5  | What is the co-efficient of $x^3y^7$ in the binomial expansion of $(2x - 9y)^{10}$ .                                                                                                                                 | 3 |
| 6  | A single card is drawn from an ordinary deck of 52 cards. Find the probability that card is a) King b) Face card (Jack, queen or king) c) Heart                                                                      | 2 |
| 7  | Define digraph and isolated graph.                                                                                                                                                                                   | 2 |
| 8  | Is there exists a graph G corresponding to following incidence matrix? Justify                                                                                                                                       | 2 |
|    | $\mathbf{I}(\mathbf{G}) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$                                                                                            |   |
| 9  | Explain the what is meant for a function to be $0(1)$ .                                                                                                                                                              | 2 |
| 10 | <ul> <li>Write the following in symbolic form.</li> <li>a) "All men are good"</li> <li>b) "No men are good"</li> </ul>                                                                                               | 2 |
|    | <b>PARI – B</b> (50 Marks)                                                                                                                                                                                           |   |
| 11 | <ul> <li>a) Construct the truth table for<br/>(P ∧ (Q ∧ R)) ∧ ¬ ((P∨Q) ∧ (R∨S)</li> <li>b) Show that the following statements are legisally equivalent without using truth</li> </ul>                                | 5 |
|    | table $(P \rightarrow Q) \Leftrightarrow (\neg P \lor Q)$ .                                                                                                                                                          | 5 |

..2

| 12 a)<br>b) | Obtain the principal conjunctive normal form of the formula( $\neg P \rightarrow R$ ) $\land$ (Q=P). Verify the validity of the following argument. | 5 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|
|             | All integers are rational numbers some integers are powers of 3<br>Therefore some rational numbers are powers of 3.                                 | 5 |
| 13 a)       | Show that $3n^5 + 5n^3 + 7$ is divisible by 15 for each positive integer n by the principle of Mathematical induction.                              | 5 |
| b)          | Show that $f(x) = x^2 + 2x + 1$ is $0(x^2)$ .                                                                                                       | 5 |
| 14 a)       | Let the compatibility relation on set $\{x, x_2, x_3, x_4, x_5, x_6\}$ be given by the matrix.                                                      | 5 |



Draw the graph and find the maximum compatibility block of the relation.

b) Determine whether the relation with the directed graph shown is equivalence relation.



Justify your answer.

- 15 a) Solve  $a_n 3a_{n-1} + 2a_{n-2} = n^2 + 1$ .
  - b) Find the number of combinations of the four objects a, b, c, d taken 3 at a time.

5

5

5

- 16 a) Find the number of positive integers between 100 and 999 inclusive are not divisible by 3 and 5.
  - b) Write incidence matrix and in degree, out degree of each vertex of the following graph.



17 a) Use Fleury's algorithm on the below graph to find an Euler circuit.



b) Write Kruskal's algorithm.



5

5

5

5

# FACULTY OF INFORMATICS

## B.E.2/4 (I.T.) I - Semester (New)(Main) Examination, December 2015

### Subject : Discrete Mathematics

#### Time : 3 Hours

#### Max. Marks: 75

(4)

#### Note: Answer all questions from Part-A and answer any five questions from Part-B. PART – A (25 Marks)

- 1 How can this English sentence be translated into a logical expression? "You can access the Internet from campus only if you are a computer science major or you are not a freshman." (2) 2 Write the truth table for implication p q. (2)3 Define tautology, Contradiction and Contingency with an example. (3)4 Define cardinality of a set with an example. (2) 5 Let f and g be the functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the composition of g and f? (3) 6 Find the octal expansion of  $(12345)_{10}$ (3) 7 What is the conditional probability that a family with two children has two boys, given they have at least one boy? Assume that each of the possibilities BB, BG, GB, and GG is equally likely, where B represents a boy and G represents a girl. (3)8 How many relations are there on a set with n elements? (2) 9 Define Euler circuit and Hamilton circuit. (2) 10 What is the prefix form for ((x + y) = 2) + ((x - 4)/3)? (3)PART- B (50 Marks) q and  $\neg p \lor q$  are logically equivalent. 11 (a) Show that p (5) (b) Show that  $(p \land q)$  $(p \lor q)$  is a tautology. (5) 12 (a) Give a direct proof of the theorem "If n is an odd integer, then  $n^2$  is odd." (6) (b) The bit strings for the sets {1, 2, 3, 4, 5} and {1, 3, 5, 7, 9} are 11 1110 0000 and 10 1010 1010, respectively. Use bit strings to find the union and intersection of these sets. (4) 13 (a) Find the greatest common divisor of 45 and 34 using the Euclidean algorithm. (5) (b) How many bit strings of length eight either start with a 1 bit or end with the two bits 00? (5) 14 (a) How many different strings can be made by reordering the letters of the word SUCCESS? (6) (b) Let X be the number that comes up when a fair die is rolled. What is the expected value of X? (4) 15 (a) What is the solution of the recurrence relation  $a_n = a_{n-1} + 2 a_{n-2}$ with  $a_0 = 2$  and  $a_1 = 7$ ? (6) (b) Find the number of solutions of  $e_1 + e_2 + e_3 = 17$ , where  $e_1$ ,  $e_2$ , and  $e_3$  are nonnegative integers with 2  $e_1$  5, 3  $e_2$  6, and 4  $e_3$ (4) 7. 16 (a) Draw the Hasse diagram representing the partial ordering {(a, b)|a divides b} on  $\{1, 2, 3, 4, 6, 8, 12\}.$ (6)
  - (b) Determine whether (P (S),  $\subseteq$ ) is a lattice where S is a set.
- 17 (a) Prove that an undirected graph has an even number of vertices of odd degree. (5)(b) Explain Prim's algorithm to find a minimum spanning tree with an example. (5)