FACULTY OF ENGINEERING

B.E. I - Year (New) (Suppl.) Examination, December 2015

Subject: Mathematics - I
Time: 3 Hours
Max.Marks: 75

Note: Answer all questions from Part A. Answer any five questions from Part B.

PART - A (25 Marks)

1 State p-series test.
2 Show that the series $\sum \frac{\cos n x}{\mathrm{n}^{2}}$ is absolutely convergent.
3 Find the value of C of Cauchy mean value theorem for $f(x)=x^{2}$ and $g(x)=x^{3}$ in $[1,4]$.
4 Obtain all the asymptotes of the curve $\frac{4}{x^{2}}+\frac{9}{y^{2}}=1$.
5 Determine $\lim _{(x, y) \rightarrow(1,-1)} \mathrm{x}^{2}-y^{2}$.
6 If $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{x+y}{x-y}$, find $\frac{\partial f}{\partial x}$ at $(2,3)$.
7 Evaluate $\nabla\left(\frac{1}{r}\right)$, where $\mathrm{r}=|\bar{r}|, \overline{\mathrm{r}}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk}$.
8 Evaluate $\int_{C} \bar{F} . d \bar{r}$, where $\bar{F}=\mathrm{x}^{2} \mathrm{i}+\mathrm{y}^{3} \mathrm{j}$ and C is the arc of the parabola $\mathrm{y}=\mathrm{x}^{2}$ in the xy plane from $(0,0)$ to $(1,1)$.

9 Define linear transformation.
10 Obtain the symmetric matrix A for the quadratic form $Q=x^{2}+2 y^{2}+3 z^{2}+4 x y+8 y z+6 x z$.

PART - B (50 Marks)

11 a) Discuss the convergence of the series $\sum\left\lfloor\sqrt{n^{2}+1}-\sqrt{\mathrm{n}^{2}-1}\right\rfloor$
b) State Leibnitz test and use it to test the convergence of the series $\Sigma(-1)^{n} \frac{n}{2 n+1}$.

12 a) State and prove Rolle's theorem.
b) Find the Taylor series expansion of $f(x)=x^{3}+3 x^{2}+2 x+1$ about $x=-1$.

13 a) If $\mathrm{w}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}, \mathrm{x}=\cos \mathrm{t}, \mathrm{y}=\ln (\mathrm{t}+1), \mathrm{z}=\mathrm{e}^{\mathrm{t}}$, find $\frac{d w}{d t}$ at $\mathrm{t}=0$.
b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} \mathrm{dx} \mathrm{dy}$ by changing to polar coordinates.

14 a) Find the values of a and b such that the surface $5 x^{2}-2 y z-9 z=0$ intersects the surface $a x^{2}+b y^{3}=4$ orthogonally at $(1,-2,1)$.
b) Use Stoke's theorem to evaluate $\int_{c}(x+y) \mathrm{dx}+(2 \mathrm{x}-\mathrm{z}) \mathrm{dy}+(\mathrm{y}+\mathrm{z}) \mathrm{dz}$, where c is the boundary of the triangle with vertices $(2,0,0),(0,3,0)$ and * $0,0,6)$.

15 a) Show that the vectors $(1,3,5),(2,-1,4),(-2,8,2)$ are linearly dependent.
b) Verify Cayley-Hamilton theorem for the matrix $A=\left(\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right)$.

16 a) Find the radius of curvature of the curve $x^{2}=8 y$ at $(4,2)$.
b) Find the extreme values of $x y z$ when $x+y+z=3$.

17 a) Find the directional derivative of $f(x, y, z)=x^{2}+y^{2}+2 z^{2}$ at $(1,1,2)$ in the direction of grad f.
b) Determine the values of k for which the system of equations $x-k y+z=0$, $k x+3 y-k z=0,3 x+y-z=0$ has i) only zero solution ii) non-zero solution.

FACULTY OF ENGINEERING AND INFORMATICS

B.E. I - Year (OId) Examination, December 2015
 Subject : Mathematics - I

Time : 3 hours
Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B. PART - A (25 Marks)

1 Discuss the applicability of Rolle's theorem for $f(x)=\operatorname{tax} x$ in $[0, \pi]$. 3
2 Find the envelope of the family of lines $y=c x+c^{2}$. 2
3 Determine $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$, if it exists.
4 Find the total derivative of $f(x, y)=x y^{3}+x^{3} y$.
5 Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} \overline{\mathrm{e}}^{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)} \mathrm{dx} \mathrm{dy}$. 3
6 State Green's theorem. 2
7 Find the value of λ so that the system of equations $2 x+y=2 z=0, x+y+3 z=0$, $4 x+3 y+\lambda z=0$ has a non-zero solution. 3
8 Are the vectors $(1,2),(2,3),(4,3)$ linearly dependent? 2
9 Show that the geometric series $1+r+r^{2}+r^{3}+\ldots \ldots \ldots \ldots$ is convergent if $|r|<1$. 3
10 Test the convergence of the series $\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\ldots \ldots \ldots .$. 2
PART - B (50 Marks)
11 a) Find the Taylor series expansion of $f(x)=x^{2} \ln x$ about $x=1$. 5
b) Find the radius of curvature of the curve $x=t-\sin t, y=1-\operatorname{cost}$ at $t=\pi$. 5
12 a) If $f(x, y)=\frac{x-y}{x+y}$, find $f_{x y}$ and $f_{y x}$ at $(1,1)$. 5
b) Find the extreme values of $x y$ on the line segment $x+2 y=2, x \geq 0, y \geq 0$. 5
13 Verify Gauss's divergence theorem for $\overline{\mathrm{F}}=2 \mathrm{x}^{2} \mathrm{y} i-\mathrm{y}^{2} \mathrm{j}+4 \mathrm{xz}^{2} \mathrm{k}$ over the cube bounded by $x=0, x=1, y=0, y=1, z=0$ and $z=1$. 10
14 a) If $A=\left(\begin{array}{ccc}2 & 1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$, find A^{-1} by Cayley-Hamilton theorem. 5
b) Reduce the quadratic form $Q=x^{2}+4 y^{2}+z^{2}+4 x y+6 y z+2 z x$ to canonical form. 5
15 a) Discuss the convergence of the series $1+2 x+3 x^{2}+4 x^{3}+$ 5
b) Test the convergence of the series $\frac{1}{3}+\left(\frac{2}{5}\right)^{2}+\left(\frac{3}{7}\right)^{3}+$ 5
16 a) State and prove Cauchy's mean value theorem. 5
b) Find the value of n such that $r^{n} \bar{r}$ is solenoidal 5
17 a) Find the rank of the matrix $\mathrm{A}=\left(\begin{array}{cccc}1 & -1 & 2 & 3 \\ 0 & 2 & 4 & 3 \\ -2 & 1 & 5 & 2\end{array}\right)$ 5
b) Test whether the series $-1+\frac{1}{2^{2}}-\frac{1}{3^{2}}+\frac{1}{4^{2}}-----$ is absolutely convergent or conditionallyconvergent.

