B.E. 2/4 (Civil) I-Semester (Suppl.) Examination, May / June 2017

Subject : Strength of Materials – I

Time : 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B. Missing data, if any, may suitably be assumed.

PART – A (2.5 x 10 = 25 Marks)

- Deformation of a bar due to its own weight is ______ the deformation caused if the bar is subjected to a direct load equal to the weight of the bar.
 i) double ii) half iii) one-fourth iv) same as
- 2 A bronze specimen has a modulus of elasticity of 120 kN/mm² and a modulus of rigidity of 47 kN/mm². Determine the Poisson's ratio of the material.
- 3 Compute the section modulus required for a 3m high vertical pole fixed at its base, subjected to a horizontal load of 7kN at its top. The permissible bending stress of the material of the pole is 12N/mm².
- 4 Sketch shear force diagram for a simply supported beam of span 'ι' subjected to a uniformly distributed load of w/unit length over the right half of the span.
- 5 A simply supported rectangular timber beam of span 3m and cross sectional area 2×10^4 mm² carries a point load w at mind span. If permissible shear stress is 2N/mm², compute the safe load the beam can carry.
- 6 Sketch the core of a circular section of diameter 25cm.
- 7 Differentiate between thin and thick cylindrical shells.
- 8 How do you ensure the required shrinkage pressure at the junction of the two tubes in a compound cylinder?
- 9 List out any two assumptions involved in the derivation of torsion equation.
- 10 Compute the power transmitted by a shaft at 160 rpm, if it is subjected to a mean torque of 50000Nm.

11 A circular bar ABCD is rigidly fixed at A and D and is subjected to axial forces as in figure (i) determine the displacements of points B and C. Take $E = 200 \text{ kN/mm}^2$.

12 A steel tube 45 mm external diameter and 3mm thick encloses centrally a solid copper bar of 30 mm diameter. The bar and the tube are rigidly connected together at the ends at a temperature of 30^oC. Find the stress in each metal when heated to 180^oC. Also find the increase in length if the original length of the assembly is 300 mm.

$$\alpha_{s} = 1.08 \times 10^{-5} / {}^{0}C$$
 and $\alpha_{c} = 1.7 \times 10^{-5} / {}^{0}C$,
Es = 2.1 x 10⁵ N/mm² and E_c = 1.1 x 10⁵ N/mm².

13 An overhanging beam is supported and loaded as in figure (2). Draw SFD and BMD.

- 14 A cantilever beam of T-section having flange 300 mm wide, 50mm thick, web thickness 60mm and overall depth 300 mm is 5m long. It carries a uniformly distributed load of w/unit run. If the allowable bending stresses in tension and compression are 40 N/mm² and 60 N/mm² respectively. Compute the safe value of w.
- 15 A hollow circular shaft of internal diameter 100 mm and external diameter 200 mm is subjected to a torque T. Find the maximum value of T if the allowable shear stress is 85 N/mm². What is the angle of twist with this torque over a length of 1m. Take N = 8×10^4 N/mm².
- 16 A closed cylinder having internal and external diameters of 400 mm and 500 mm respectively is subjected to an internal pressure of 2 N/mm². Determine the maximum and minimum circumferential stresses in the cylinder. Find radial pressure at a radius of 220 mm. Also determine the percentage error if maximum circumferential stress is calculated from thin cylinder formula.
- 17 Draw the shear stress distribution diagram for T section as shown below for a shear force of 10 kN.

B.E. 2/4 (EEE) I - Semester (Suppl.) Examination, May / June 2017

Subject : Principles of Mechanical Engineering

Time : 3 Hours

Max. Marks: 75

Note: Answer all questions from Part-A and answer any five questions from Part-B.

PART – A (25 Marks)

- 1 Name some reversible and irreversible thermodynamic processes.
- 2 What are the different modes of heat transfer?
- 3 Name important properties of Black body.
- 4 Classify Heat Exchangers.
- 5 Define ton of refrigeration.
- 6 Name the types of Compressor and which one is better.
- 7 Define mechanical efficiency of an IC engine. Write its expression.
- 8 What are the essential functions of a Boiler and why it is not much in use now a days?
- 9 How do you compute length of a Belt?
- 10 What is the significance of Bernoulli's Equation?

PART- B (5x10=50 Marks)

- 11 (a) Derive a steady flow energy equation with a suitable illustration.
 - (b) Describe a reversible and irreversible thermodynamic processes with suitable examples and p-v diagrams.
- 12 (a) Briefly bring out the concept of heat transfer through conduction ,convection and radiation-which one is preferred and under what conditions?
 - (b) Describe industry applications of Heat Exchanger.
- 13 (a) Define c.o.p and describe simple vapour compression system of refrigeration with suitable illustration.
 - (b) What do you understand by Psychrometric processes?
- 14 (a) Which is more efficient-2-stroke or 4-stroke engine? Substantiate your claim with illustration.
 - (b) Classify different Gas Turbines and briefly describe the functioning of any one of them.
- 15 (a) Briefly describe with illustrations, simple, compound and inverted gear trains.
 - (b) What do you understand by ratio of tension in Belt drive? Bring out its significance with mathematical expression,
- 16 (a) Compute the length of a cross Belt in a Belt drive system with neat sketch.(b) Bring out the differences between Venturi meter and Orifice meter.
- 17 Write short notes on:
 - (a) Centrifugal pump.
 - (b) Draft tube.
 - (c) Epicyclic Gear train.

B.E. 2/4 (Inst.) I - Semester (Suppl.) Examination, May / June 2017

Subject : Elements of Production Techniques

Time : 3 Hours

Max. Marks: 75

Note: Answer all questions from Part-A and answer any five questions from Part-B.

PART – A (25 Marks)

- 1 Classify the manufacturing processes under the broad and sub-classifications.
- 2. Bring out different parts of a mould and its brief use.
- 3. In a gas welding flame ,what different temperatures are obtained at different flame points.
- 4. Differentiate resistance, butt and spot weldings.
- 5. How Lathe can be specified?
- 6. Define indexing in a milling machine.
- 7. Name the needs for a non-conventional machining.
- 8. Differentiate between LBM and EDM processes.
- 9. Classify the forming processes.
- 10. Where do you use deep drawing process and why.

PART- B (5 x 10 = 50 Marks)

- 11 (a) Justify the limitations of manufacturing processes?(b) What are the merits and demerits of sand casting and die casting processes?
- 12 (a) Define Arc welding process. What are the different arc welding processes? Describe briefly with illustration ,the Submerged Arc Welding process.
 - (b) Differentiate between welding, brazing and soldering.
- 13 (a) Explain the working principle of a horizontal milling machine with a neat sketch.
 - (b) Explain the FMS process and its salient advantages.
- 14 (a) Explain Quick Return Mechanism with a neat sketch.
 - (b) Describe the working principle of Ultrasonic Machining.
- 15 (a) What is the concept of forging. Differentiate Hand Forging and Machine Forging processes?
 - (b) Is there any difference between Extrusion and Wire drawing? Explain with a neat sketch any extrusion process.
- 16 (a) Explain briefly the concept of Powder Metallurgy.(b) Differentiate between Conventional and Non-conventional machining.
- 17 Write shot notes on :
 - (a) Rolling.
 - (b) Cores.
 - (c) Flux

B.E. 2/4 (ECE) I - Semester (Suppl.) Examination, May / June 2017

Subject : Elements of Mechanical Engineering

Time : 3 Hours

Max. Marks: 75

Note: Answer all questions from Part-A and answer any five questions from Part-B.

PART – A (25 Marks)

- 1 Explain various thermodynamic systems with an example in each case.
- 2 Draw port timing diagram and valve timing diagram of I.C.Engine
- 3 State conduction equation and mention its importance.
- 4 Write practical applications of heat exchangers.
- 5 List various refrigeration systems.
- 6 Sketch humidification and sensible cooling process on Psychrometry chart.
- 7 List various applications of Metal forming process.
- 8 Sketch various types of Patterns used in sand casting.
- 9 Sketch inverted gear train and mention its applications
- 10 Define mechanism and machine.

Part-B (50 Marks)

11	(a) (b)	Derive the expression for the volumetric efficiency of reciprocating air compressor. A single cylinder oil engine has a compression ratio of 11 to 1. The specific fuel consumption is 0.7kg/kW-hr. The calorific value of the fuel oil is 44200 k l/kg. Calculate i)Thermal efficiency ii)Relative efficiency assume	(5) C
		engine operates on constant volume cycle. Take =1.41.	(5)
12	(a) (b)	Derive the expression for the LMTD of counter flow heat exchangers. A composite wall is made of two slabs with outside surface temperatures maintained at 1500°C and 120°C.The first slab has a thickness of 500mm and thermal conductivity of 1.45W/mK the thickness and thermal conductive of the second slab are 165mm and 0.40W/mK respectively. Determine the conduction heat transfer through this composite wall per square metre	(4) vity
		area.	(6)
13	(a)	Describe the working of vapour compression refrigeration system with a ne sketch.	eat (5)
	(b)	List various advantages of air refrigeration system and derive the expression for the COP of bell coleman cycle.	on (5)
14	(a)	Sketch a typical lathe machine and describe the function of important components on it.	(5)
	(b)	Describe the working of Extrusion process.	(5)
15	(a)	Two pulleys 60 cm and 40 cm diameters are connected by a belt. Central distance between the pulleys is 5 m. Find the length of belt for i)Open belt drive ii) Cross belt drive.	(5)
	(b)	Sketch compound gear train and derive the expression for the Velocity ratio.	(5)

- 16 (a) Air at 1 bar pressure, 300K temperature flows steadily at the rate of 12kg/min into a reciprocating air compressor to a pressure of 10 bar find the power required When i) compression process is isentropic ii)lsothermal compression process compare the results.
 - (b) Air at 20°C blows over a hot plate of area 50cm X 75cm maintained at 300°C. The convective heat transfer coefficient is 25w/m². Calculate the heat transfer and compare the heat transfer rate with a hot plate area of 75cmX 100cm. (5)

- 17 Write short notes any **two** of the following : (2x5)
 - (a) Eco friendly refrigerants
 - (b) Arc welding
 - (c) Compound belt drives

B.E. 2/4 (CSE) I - Semester (Suppl.) Examination, May / June 2017

Subject : Basic Electronics

Time : 3 Hours

Max. Marks: 75

Note: Answer all questions from Part-A and answer any five questions from Part-B.

PART – A (25 Marks)

1	Define Fermi level.	(2)
2	Draw the block diagram of Op. Amp and explain.	(3)
3	What are the advantages of LED and LCD?	(2)
4	Define transition capacitance C_T and diffusion capacitance C_D of a PN diode.	(3)
5	Derive the relation between α , β and γ of a transistor.	(3)
6	Differentiate between positive and negative feedback.	(2)
7	What is a ripple in rectifiers? How can it be reduced?	(2)
8	Draw the truth table of a Half Subtractor and implement with gates.	(3)
9	Define g_m , r_d and μ of a JFET and derive the expression for g_m .	(3)
10	State and explain the Barkhausen criterion for oscillations.	(2)

PART – B (50 Marks)

11	(a)	Explain how a Zener diode acts as a voltage regulator.		(5)
	(U)	explain its working.		(5)
12	(a) (b)	Draw a CE amplifier circuit and explain its frequency response. The reverse saturation current in a transistor is 8μ A. If the transistor compase current gain is 0.979, calculate the collector and emitter current for	mon 4011A	(5)
		base current.	τομπ	(5)
13	(a)	Draw the block diagram of a voltage series feedback amplifier and derive A_{vf} , R_{if} and R_{of} .	for	(5)
	(b)	Draw the Wein bridge oscillator circuit and derive for its operating frequer	псу.	(5)
14	(a) (b)	Explain how an Op-Amp works as an integrator. What are Universal gates?		(5) (5)
15	(a) (b)	Draw the block diagram of CRO and explain. Draw and explain V-I characteristics of UJT.		(5) (5)
16	(a)	Explain V-I characteristics of p-n junction diode. (b) Explain instrumentation amplifier.		(5) (5)
17		Write short notes on the following:	(10)	
		(b) Silicon Controlled Rectifier(c) Photo Transistor		

FACULTY OF INFORMATICS

B.E. 2/4 (I.T) I - Semester (Suppl.) Examination, May / June 2017

Subject : Data Structures

Time : 3 Hours

Max. Marks: 75

Note: Answer all questions from Part-A and answer any five questions from Part-B.

PART – A (25 Marks)

1 2	Define Data Structure. Write the characteristics of Data structures. Write an ADT for stack and Queue.	(3) (3)	
3	Write the prefix and postfix expression for $AB*C - D + E / F / (G + H)$.	(3)	
4	write the difference between linear queue and circular queue.	(2)	
5	Write about Thread Binary Trees with an example.	(3)	
6	List the applications of Queue.	(2)	
7	Differentiate between array and linked lists.	(2)	
8	What is minimum cost spanning Tree?	(2)	
9	Discuss the various forms of graph representations with example.	(3)	
10	10 Evaluate the expression 6 4 9 3 - * +. (

PART – B (50 Marks)

11 (a) Explain the term space complexity and Time complexity. Find the Time		
complexity for matrix addition of size m $*$ n.		(2+3)
(b) Write a C++ function to extract a given string.	(5)	

12 Write an algorithm for conversion of an infix expression to postfix expression and trace the algorithm for the expression ((((A/B)*C)*D)+E) and get the resultant postfix expression. (5+5)

- 13 Write a procedure for insertion and deletion of an element from a Doubly Linked List with an example. (10)
- 14 Define AVL. Tree Construct AVL tree for the following input sequence 8, 10, 15, 5, 9, 7, 2, 23, 17 (10)
- 15 Explain Kruskal's algorithm and find minimum cost spanning tree for the following graph (5+5)

(5+5)

16 Give the following list of numbers
16, 12, 2, 6, 80, 20, 9, 15, 5, 79, 6
Use quick sort algorithm to sort them. Show different passes (trace) indicating the pivot and the partitions formed. Specify its time complexity. (10)

- 17 Write short notes on any two of the following:
 - (a) Red Black Trees
 - (b) Splay Trees
 - (c) Merge sort

B.E. 2/4 (M / P / AE) I – Semester (Suppl.) Examination, May / June 2017

Subject: Managerial Economics & Accountancy

Time: 3 Hours

Max.Marks: 75

Note: Answer all questions from Part A. Answer any five questions

from Part B.

PART – A (25 Marks)

- 1 Define ARR method.
- 2 What is meant by working capital?
- 3 What is imprest system?
- 4 What is capital receipt?
- 5 Incremental costs and sunk costs.
- 6 Write about profitability index.
- 7 Define concept of Equilibrium.
- 8 Total market demand and market segment demand.
- 9 Discounting principle.
- 10 Scarcity definition of economics.

PART - B (5x10 = 50 Marks)

- 11 Explain the Fundamental concepts of Managerial economics.
- 12 What are the factors influencing demand for a commodity by consumer? Explain.
- 13 Write about the Law of returns in detail.
- 14 Explain various determinants of working capital of a concern.
- 15 Calculate NPV from the following details of two machines each costing Rs.

Year	Machine A	Machine B
\sim	(Rs)	(Rs)
1	15,000	5,000
2	20,000	15,000
3	25,000	20,000
4	15,000	30,000
5	10,000	20,000

16 Calculate:

i) P/v ratio

50,000.

- ii) Break-even point
- iii) Profit/loss when the sales amount to Rs. 40,000 and
- iv) Sales required to earn a profit of Rs. 20,000 from the following details:

1st Year: Sales Rs. 75,000, Profit Rs. 10,000 2nd Year: Sales Rs. 80,000, Profit Rs. 15,000 2

- 17 From the following details prepare a Bank Reconciliation Statement showing the balance as per cash book as on 31st March, 2004.
 - 1 Cheques of Rs. 10,000 paid into bank on 25th March, out of which Rs. 4000 appears to have been credited in the pass book in the month of April, 2004.
 - 2 Cheques had been issued for 15,000 out of which only 7,000 have been encashed before the date.
 - 3 Banker's have given a wrong credit to the firm's account Rs. 2,000.
 - 4 Bank charges entered in Passbook, but no entry appears in Cash book Rs. 500.
 - 5 Passbook shows a credit of Rs. 1,500 towards interest on investments collected by bank.
 - 6 The bank balance as per pass book showed Rs. 18,000.

-2-