FACULTY OF ENGINEERING

B.E. II - Semester (Main) Examination, May/June 2017

Subject: Engineering Mathematics - II

Time: 3 Hours Max.Marks: 70

Note: Answer all questions from Part A and any five questions from Part B.

PART - A (20 Marks)

1 Solve $(x^3 - 2y^2) dx + 2xy dy = 0$.

- 2 Solve $\cos^2 x \cdot \frac{dy}{dx} + y = \tan x$.
- 3 Solve $(D^3+16D)y = 0$.
- 4 Find the particular integral of $(D^2-4D+4)y = e^{2x}$
- Determine the nature of the singular points of the differential equation

$$x^2y'' + 9xy' + 6y = 0.$$

- 6 Express $f(x) = 5x^3 + 6x^2 + 4$ in terms of Legendre polynomials.
- 7 Evaluate $\int_{1}^{\infty} t^4 \cdot e^{-2t^2} \cdot dt$.
- 8 Evaluate $\int_{0}^{\infty} e^{-mx} (1 e^{-x})^n$.dx, where m, n are positive integers.
- 9 Find L $\{t^3 e^{-4t}\}$. 10 Find L $\{\frac{1}{(s+2)(s+3)}\}$

PART – B (50 Marks)

- 11 a) Solve $x \frac{dy}{dx} + y = y^2 x^3 \cos x$.
 - b) Find the orthogonal trajectories of the family of circles $x^2+y^2=2gx$ where q is the parameter.
- 12 a) Solve $(D^2+4)y = x^2+1+\cos 2x$.
 - b) Solve $(x^2 D^2 + x D + 1)y = \log x$.

13 Find the Frobenius series solution about x = 0 of the equation xy'' + (1-x)y' + 3y = 0.

- 14 a) Show that $\int_{0}^{t} erf(x) dx = t erf(rt) + \frac{1}{2\sqrt{-1}} \left[e^{-2t^2} 1 \right]$.
 - b) Show that $x J'_{n}(x) = n J_{n}(x) n J_{n+1}(x)$.
- 15 a) Evaluate $L\left\{e^{-t}\int_{0}^{t}\frac{\sin u}{u}\ du\right\}$.
 - b) Evaluate L⁻¹ $\left\{ log \left(\frac{s+3}{s+4} \right) \right\}$.
- 16 a) Find the general solution of the equation $y' = 4xy^2 + (1-8x) y + 4x 1, \text{ if } y = 1 \text{ is a particular solution.}$
 - b) Solve $(D^2+9)y = 4 \tan 3x$ by the method of variation of parameters.
- 17 a) Show that $P'_{n}(x) = x P'_{n-1}(x) + n P_{n-1}(x)$.
 - b) Solve $\frac{d^2y}{dt^2} 2\frac{dy}{dt} + y = e^t$ where y(0)=2, y'(0)=-1 by the method of Laplace transforms.