Code No. 3002/BL

FACULTY OF ENGINEERING \& INFORMATICS

B.E. I Year (Backlog) Examination, June 2017

Subject: Mathematics - I
Time: 3 Hours
Note: Answer all questions from Part A and any five questions from Part B. PART - A (25 Marks)

1 Discuss the convergence of the series $2+\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\ldots$
2 Prove that the series $\sum(-1)^{\mathrm{n}+1} \frac{1}{\sqrt{\mathrm{n}}}$ is conditionally convergent.
3 Find a point on the curve $f(x)=x^{2}-2 x$ in $[0,2]$ at which the tangent is parallel to x-axis.
4 Obtain the envelope of the family of curves $y=c x+\frac{3}{2 c}, c$ is a parameter.
5 If $u=2 x y, v=x^{2}-y^{2}, x=r \cos \theta$, the evaluate $\frac{\partial(u, v)}{\partial(r, \theta)}$.
6 Find the Taylor's series for $f(x, y)=x^{2}+4 x y+2 y^{2}+6 x+4 y+1$ about (1, -2$)$.
7 If $\bar{F}=x^{2} y i+x y^{2} z j-y z^{2} k$, find $g r a d \operatorname{div} \bar{F}$.
8 Evaluate $\oint_{C} \bar{F} d \bar{r}$, where $\bar{F}=\left(4 x y-3 x^{2} z^{2}\right) i+2 x^{2} j-2 x^{3} z k$ and C is $y=x^{2}$ from $x=0$ to $x=1$.

9 Find the values of k such that the rank of

$$
A=\left(\begin{array}{ccc}
1 & -2 & 3 \\
2 & k & 4 \\
-1 & 2 & 5
\end{array}\right) \text { is } 3
$$

10 Verify that $\binom{1}{1}$ is an eigen vector of $\left(\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right)$ corresponding to the eigen value 5.
PART - B (5x10 = 50 Marks)
11 a) Test the convergence of the series $\frac{x}{2}+\frac{2!}{3^{2}} x^{2}+\frac{3!}{4^{2}} x^{3}+---(x>0)$ 5
b) Examine the convergence or divergence of the series $\sum\left(\sqrt{\mathrm{n}^{3}+1}-\sqrt{\mathrm{n}^{3}}\right)$.

12 a) State and prove Cauchy's mean value theorem.
b) Find all the asymptotes to the curve $x^{3}+3 x^{2} y-4 y^{3}-x+y+3=0$.

13 a) If $z=f(x, y), x=u \cos \alpha-v \sin \alpha, y=u \sin \alpha+v \cos \alpha$ prove that

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial^{2} z}{\partial u^{2}}+\frac{\partial^{2} z}{\partial v^{2}} . \tag{5}
\end{equation*}
$$

b) Find the shortest and fastest distances from the point (1,2,-1) to the sphere $x^{2}+y^{2}+z^{2}=24$ using Lagrange's method of multipliers.

14 a) Find the constants a, b, c such that $\bar{F}=(2 x+3 y+a z) i+(b x+2 y+3 z) j+(2 x+c y+3 z) k$ is irrotational and find a scalar function f such that $\bar{F}=\nabla f$.
b) Evaluate $\int_{C} x d y-y d x$, where c is the triangle with verticdes at $(0,0),(2,0)$ and $(0,1)$ using Green's theorem.

15 a) Test the consistency of the equations $x+y+z=6, x-y+2 z=5,3 x+y+z=8$ and $2 x-2 y+3 z=7$ and hence solve.
b) Find the characteristic equation of the matrix $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$ and hence find the matrix

$$
A^{8}-5 A^{7}-A^{6}-5 A^{5}-A^{4}+6 A^{2}+1
$$

16 a) Find the curvature and radius of curvature of the curve $r=a(1+\cos \theta)$ at any θ.
b) Evaluate $\int_{0}^{\infty} \int_{0}^{x} x e^{\frac{-x^{2}}{y}} d y d x$ by change the order of integration.

17 Reduce the quadratic form $Q=3 x^{2}+3 y^{2}+3 z^{2}+2 x y+2 x z-2 y z$ to canonical form and hence find its nature, index and signature.

