Code No. 3004/BL

FACULTY OF ENGINEERING & INFORMATICS

B.E. I – Year (Backlog) Examination, June 2017

Subject: Engineering Physics

Max.Marks: 75

2

3

2

3

1

Note: Answer all questions from Part A and any five questions from Part B.

PART – A (25 Marks)

- 1 Newton's rings are observed in reflected light of wavelength 5900 A°. The diameter of the dark ring is 0.5 cm. Find the radius of curvature of the lens and the thickness of the corresponding air film.
- 2 Explain the phenomenon of double refraction.
 3 What are different types of optical fibres.
 4 An electron is bound in a one-dimensional potential box which has a width 2.5x10⁻¹⁰ m. Assuming the height of the box to be infinite, calculate the lowest two permitted energy values of an electron.
 3 State and explain Bragg's law.
 6 Distinguish between conductors, semiconductors and insulators.
- 7 What are ferrites and mention few applications?
- 8 Explain Meissner Effect.
- 9 Mention few applications of nano materials.
- 10 Match the following:

Time: 3 Hours

1	Coherent sources	a)	Diffraction
2	Population inversion	b)	Optical Fibre
3	Grating	c)	Interference
4	Acceptance Angle	d)	Lasers
		e)	Polarization
i)	1 – e; 2 – a; 3 – c; 4 – d	ii)	1 - c; 2 - d; 3 - a; 4 - b
iii)	1 – d; 2 – a; 3 – b; 4 – e	iv)	1 – a; 2 – b; 3 – c; 4 – d

PART - B (5x10 = 50 Marks)

- 11 a) Discuss the phenomena of interference of light due to the thin film and calculate the conditions.
 - b) Discuss Fraunhofer's diffraction at a double slit and explain intensity distribution.

5 5

Code	No.	3004/	ΒL
------	-----	-------	----

12 a)	What are fermions and obtain the Fermi-Dirac distribution function for fermions?	5
b)	A particle is in motion along a line between x=0 and x=a with zero potential energy.	
	At points for which x<0 and x>a, the potential energy is infinite. Find the expression	
	for wave function for the particle in the n th state.	5
13 a)	State Bragg's law and discuss the powder method for study of structure of crystalline	
	solids by X-ray diffraction.	5
b)	Find the carrier concentration of electrons in an intrinsic semiconductor.	5
14 a)	Explain Weiss domain theory of ferromagnetism and hysteresis variation.	5
b)	What are general properties of superconductors?	5
15 a)	Explain physical vapour deposition technique in preparing thin films.	5
b)	Mention optical, electrical and mechanical properties of nano materials.	5
16 a)	What is holography and explain construction and reconstruction of hologram.	5
b)	Explain construction and working of Ruby laser.	5
17 W	rite a note on any two:	
a)	BCS theory of superconductivity	5
b)	Solar cells	5
C)	LED. ****	Э