## FACULTY OF ENGINEERING

## B.E. 2/4 I-Semester (Supplementary) Examination, May / June 2017

Subject : Mathematics - III (Common to All Except ECE / I.T.)

## Time : 3 hours

Max. Marks : 75

## Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART - A (25 Marks)
1 Form a partial differential equation by eliminating arbitrary function from $z=f\left(\frac{x y}{z}\right)$. 3
2 Solve pq=xy.
3 Find Fourier series for $f(x)=x^{2}$ in the interval ( $-2, .2$ ).
4 One-dimensional heat equation is $\qquad$ .

5 If $A, B$ are any two events and $P(A \cap B)=0.4$ and $P(A / B)=0.7$ then find $P(\bar{B})$.
6 A continuous random variable $x$ has the $p d f f(x)=3 x^{2}$ where $0<x<1$. Find the value of $b$ if $P(x>b)=0.05$.

7 Find MGF of Poisson distribution.
8 Write applications of F-Test.
9 Show that the coefficient of correlation is geometric mean of regression coefficients.
10 Find angle between two regression lines

$$
x=0.7 y+5.2 \text { and } y=0.3 x+2.8
$$

PART - B (50 Marks)
11 a) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$.
b) Solve $p(1+q)=q z$.

12 a) Expand $f(x)=x$ sin $x$ as a Fourier series in the interval $[-\pi, \pi]$.
b) Find half range Fourier sine series for

$$
f(y)=\left\{\begin{array}{cc}
x & 0<x<1 / 2 \\
1-x & 1 / 2<x<1
\end{array}\right.
$$

13 a) The contents of the boxes are as follows:
Box 1: 1 white, 2 black, 3 red balls
Box 2 : 2 white, 1 black, 1 red balls
Box 3 : 4 white, 5 black, 3 red balls
Two balls are drawn at random from a chosen box and they happen to be one white and red. What is the probability that the balls are drawn from box 2 ?
b) If $x, y$ are any two random variables, then show that $E(x+y)=E(x)+E(y)$.

14 a) In a test of 2000 electric bulbs, it was found that life of a electric bulbs was normally distributed with an average life of 2040 hours and S.D. of 60 hours. Estimate the number of bulbs likely to burn i) more than 2150 hours

$$
\text { ii) less than } 1950 \text { hours. }
$$

b) Find mean and variance of Chi-square distribution.

15 a) In a partially destroyed laboratory record, only lines of regression $y$ on $x$ and $x$ on $y$ are available as $4 x-5 y+33=0$ and $20 x-9 y=107$ respectively. Calculate mean values of $x$ and $y$ and coefficient of correlation.
b) Fit a straight line $y=a x+b$ for the following data.

| x | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | 1 | 1.8 | 1.3 | 2.5 | 6.3 |

16 a) Define i) Random variable
ii) Mathematical expectation
iii) MGF iv) Discrete R.V. and v) Continuous R.V.
b) Fit a Poisson distribution to the following data.

| $x$ | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f$ | 46 | 38 | 22 | 9 | 1 |

17 Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ with the boundary conditions $u(0, t)=u(1, t)=0$ and $u(x, 0)=3 \sin \pi x$, where $0<x<1, t>0$.

## FACULTY OF ENGINEERING

## B.E. 2/4 (ECE) I - Semester (Suppl.) Examination, May / June 2017

## Subject : Applied Mathematics

Time : 3 Hours
Max. Marks: 75
Note: Answer all questions from Part-A and answer any five questions from Part-B.

## PART - A (25 Marks)

1 Form a partial differential equation by eliminating the arbitrary constants $a$ and $b$ from

$$
\begin{equation*}
z=a e^{b x} \text { sinby } \tag{3}
\end{equation*}
$$

2 Solve $q=2 y p^{2}$.
3 If $f(z)=u+i v$ is analytic and $v=$ constant, show that $f(z)$ is constant.
4 Define harmonic function. Give an example.
5 Find the Taylor series expansion of $f(z)=\frac{1}{z^{2}}$ about $\mathrm{z}=1$.
6 Define fixed point of a transformation $w=f(z)$. Find the fixed points of $w=4 z^{2}$.
7 Find the first two approximations to a root of $\mathrm{xe}^{\mathrm{x}}-1=0$ by bisection method.
8 Evaluate $\Delta(x+\cos x)$ with $h=1$.
9 Write down the normal equations to fit a curve of the form $y=a e^{b x}$.
10 Two lines of regression are $8 x-10 y+66=0,40 x-19 y=214$ and $\operatorname{var}(x)=9$.
Find the standard deviation of $y$.
PART - B (50 Marks)

11 (a) Find the general solution of the differential equation $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$.
(b) Solve $y p+x q+p q=0$ by Charpit's method.

12 (a) Construct the analytic whose real part is $x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$.
(b) State and prove Cauchy's integral theorem.

13 (a) Classify the singular pints of $f(z)=\frac{z+1}{z^{2}(z-1)(z-3)^{3}}$ and find also the residue at $\mathrm{z}=1$.
(b) State residue theorem and hence evaluate $\oint_{c} z^{2} e^{\frac{1}{z}} d z$ where c is $|\mathrm{z}|=1$.

14 (a) Apply Newton's backward formula to find $f(1.9)$ for the following data.

| $x$ | 1 | 1.4 | 1.8 | 2.2 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 3.4 | 4.8 | 5.9 | 6.5 |

(b) Find an approximate value of $y(0.2)$ for $y^{\prime}=\frac{y-x}{y+x}, y(0)=1$ by Runge - Kutta method of order 4.

15 (a) Fit a straight line of the form $y=a x+b$ to the following data:

| x | 1 | 2 | 3 | 4 | 6 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 2.4 | 3 | 3.6 | 4 | 5 | 6 |

(b) Find the rank correlation coefficient to the following data:

| x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 2 | 4 | 5 | 3 | 8 | 6 | 7 |

16 (a) If $f(z)$ is an analytic function, prove that

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)[\operatorname{Re} f(z)]^{2}=2\left|f^{\prime}(z)\right|^{2} \text {. } \tag{5}
\end{equation*}
$$

(b) Using Cauchy's integral formula, evaluate $\oint_{C} \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{2}} d z$, where $C$ is $|z|=1$.

17 (a) Find the bilinear transformation which maps the points $z=1, i,-1$ into the points $w=0,1, \infty$.
(b) Show that the angle between the two regression lines is

$$
\begin{equation*}
\theta=\tan ^{-1}\left(\frac{1-r^{2}}{r} \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}\right) . \tag{5}
\end{equation*}
$$

## FACULTY OF INFORMATICS

## B.E. 2/4 (IT) I - Semester (Suppl.) Examination, May / June 2017

Subject : Discrete Mathematics
Time : 3 Hours
Max. Marks: 75
Note: Answer all questions from Part-A and answer any five questions from Part-B.

## PART - A (25 Marks)

1 If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{a} \mid \mathrm{c}$ then prove that $\mathrm{a} \mid(\mathrm{b}+\mathrm{c})$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are integers.
2 Write the Converse, Inverse and Contra positive of the following implication: "When I stay uplate, it is necessary that I sleep until noon".
3 State Product Rule.
4 Suppose that a department contains 15 women and 10 men. How many ways are
there to form a committee of 6 members if it must have more women than men?
5 Define Probability.
1 Solve the Recurrence Relation $a_{n}+3 a_{n-1}+3 a_{n-2}+a_{n-3}=0$.
2 Define Partial Ordering and a Poset.
3 Define chromatic number of a graph.
4 Define Strongly and Weakly connected graphs.
10 What is the postfix form of the expression $[(x+y) \uparrow 2]+[(x-4) / 3]$ ?

## PART- B (50 Marks)

11 (a) Show that the following compound proposition is a tautology.

$$
[(p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)] \rightarrow r
$$

(b) Show that $p \leftrightarrow q$ and $(p \wedge q) \vee( \rceil p \wedge\rceil q)$ are logically equivalent.

12 (a) Give a proof by contradiction of the theorem " if $3 n+2$ is odd then ' $n$ ' is odd.
(b) If ' $n$ ' and ' $k$ ' are positive integers with $n \geq k$ then prove that

$$
c(n+1, k)=c(n, k-1)+c(n, k)
$$

13 (a) Find is the variance of the random variable ' $X$ ' whose value when two dice are rolled is $X[(i, j)]=2 i$, where ' $i$ ' is the number appearing on the first die and ' $j$ ' is the number appearing on the second die.
(b) Use generating function to show that $\sum_{k=0}^{\infty}(C(n, k))^{2}=C(2 n, n)$ where ' $n$ ' is a positive integer

14 (a) Draw the Hasse diagram representing the partial ordering $\{(a, b) /$ 'a' divides 'b'\} on $\{2,4,5,10,12,25\}$.
(b) State and prove Euler's formula on planar graphs.

Code No. 3039 / S
..2..
15 (a) If ' $G$ ' is a connected planar simple graph with 'e' edges and ' $v$ ' vertices, show that $e \leq 3 v-6$.
(b) Use Depth First Search algorithm to find a spanning tree for the graph given below:


16 (a) If ' $m$ ' is a positive integer and if $a \cong b(\bmod m)$ and $c \cong d(\bmod m)$ then prove that $(a+c) \cong(b+d)(\bmod m)$ and $a c \cong b d(\bmod m)$.
(b) What is the probability that a bit string of length 4 is generated at random so that each of 16 bit strings of length 4 is equally likely, contains atleast two consecutive 0 's, given that its first bit is a ' 0 '?
(Assume that 0 bits and 1 bits are equally likely)
17 (a) Solve the recurrence relation $a_{n}-8 a_{n-1}+16 a_{n-2}=4^{n}$.
(b) Prove that a tree with ' $n$ ' vertices has exactly ( $n-1$ ) edges.

