FACULTY OF ENGINEERING

B.E. 2/4 (EE / Inst.) II - Semester (Main) Examination, June 2017

Subject: Electronic Engineering – I

Time: 3 Hours

Max. Marks: 70

Note: Answer all questions from Part A and any five questions from Part B.

PART – A (20 Marks)

1 Draw the V-I characteristics of ideal diode. 2 2 2 Distinguish between Zener and Avalanche breakdown. 2 3 Explain about half wave rectifier with neat diagram. 2 4 Draw the block diagram of CRO. 5 What is punch through effect in transitor? 2 6 When a reverse voltage of 10V is applied between gate and source of JFET the gate 2 current is 0.001 µF. Determine the resistance between gate and source. 2 7 Compare CB, CE and CC configuration. 2 8 List out the features of low frequency BJT amplifier. 9 Explain the effect of by pass capacitor on LF response. 2

10	Wr	hat is pinch-off voltage?	2
11		PART – B (5x10 = 50 Marks) nat is rectifier? Explain with the neat diagram the working principle of full-wave stifier. Derive the expression for ripple factor of full-wave centre tapped transformer.	10
12		Explain different types of PN junction formation technique. Compare filters L, C, LC and CLC used in power supplies.	5 5
13		Explain with suitable diagrams operation of NPN transistor. Explain the operation of CE configuration with neat circuit diagram.	5 5
14		Explain in detail about BJT amplifier with approximate model. Consider a two stage CE-CC cascade amplifier having $h_{ie} = h_{ic} = 2K$; $h_{fe} = 50$; $h_{fc} = -51$; $h_{re} = 6x10^{-4}$, $h_{rc} = 1$ and $h_{oe} = h_{oc} 25$ uA/V. Find the input impedance, voltage gain and current of individual stages as well as combination. Assume values if required.	5
15	,	Draw the frequency response of RC coupled amplifier and show that gain bandwidth product is constant. Discuss in detail JFET formation, operation and V-I characteristics with suitable diagrams.	5
16		Describe the working of a SCR with suitable waveforms. Derive the relationship between the beta (s) and alpha (r) of a transistor.	5 5
17		ite short notes on the following: MOSEETS (Depletion Mode)	10

- a) MOSFETS (Depletion Mode)
 - b) LCD.

FACULTY OF ENGINEERING

B.E. (ECE) II – Semester (Main) Examination, June 2017

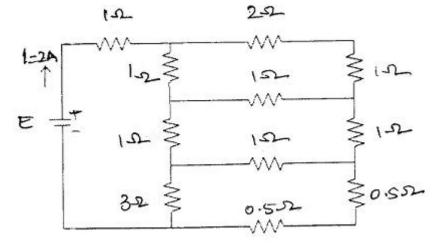
Subject: Electrical Technology

Time: 3 Hours

Max.Marks: 70

5

5


Λ

Note: Answer all questions from Part A and any five questions from Part B.

PART – A (20Marks)

1	Explain the principle of a DC Generator.	2
2	What is the function of a commutator in DC Generator?	2
3	Show the three phase and line voltage relations in vector diagram.	2
4	How do you convert a three phase star connected load to a delta connected load?	2
5	Define the regulation of a synchronous machine and its importance.	2
6	Why alternator is called as synchronous generator?	2
7	Explain the working principle of single phase transformer.	2
8	Draw the leading phasor diagram of loaded transformer.	2
9	List the applications of induction motors.	2
10	Differentiate between the cage and wound rotor induction motors.	2
	PART – B (5x10 = 50 Marks)	
11	a) Explain constructional features and operation of a DC generator.	5
	b) Explain the basic working principle of three point starter with neat diagram.	5

- 12 a) Explain the method of measuring the power by two wattmeter method.
 - b) Find the value of the voltage source that delivers 2 Amps current through the circuit as shown below.

5

5

5

5

5

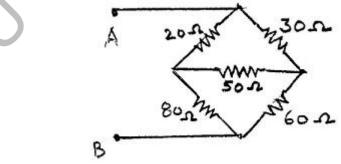
5

5

5

5

5


13 a) A 3-phase, wye-connected, round-rotor synchronous generator rated at 10 kV A, 230 V has a synchronous reactance of 1.2Ω per phase and an armature resistance of 0.5 Ω per phase. Calculate the percent voltage regulation at full-load with 0.8 lagging power factor.

b) Explain the constructional details of AC generator.	<u> </u>	

- 14 a) Develop the equivalent circuit of a single phase transformer.
 - b) How do you conduct the no-load test on transformer? Explain.
- 15 a) Describe the construction and principle of operation of shaded pole motor.
 - b) Discuss about the production of rotating magnetic field in an induction motor.
- 16 a) In a 20 kVA, 200 / 200 V, single-phase transformer, the iron and full-load copper losses are 350 and 400 W respectively. Calculate the efficiency at unity power factor on (i) full load, (ii) half full-load.
 - b) If the e.m.f. in the starter of an 8-pole induction motor has a frequency of 50 Hz and that in the rotor 1.5 Hz, at which speed is the motor running and what is the slip?
- 17 a) A 440 V DC shunt motor takes a 4 A at no-load. Its armature and field resistances are 0.4 ohm and 220 ohms respectively. Estimate the kW output and efficiency when the motor takes 60 A on full load.
 - b) Explain the principle of operation of auto-transformer.

FACULTY OF ENGINEERING						
B.E. (CSE / IT) II – Semester (Main) Examination, June 2017						
Subject: Basic Electrical Engineering Time: 3 Hours Max.Marks: 70						
Note: Answer all questions from Part A and any five questions from Part B.						
	PART – A (20 Marks)					
1	State Kirchnoff's current law.	2				
2	What do you understand by the term RMS value?	2				
3	What is reactive power?	2				
4	A balanced star connected load of (8+j6) ohms per phase is connected to a balanced					
	three phase 400 V supply. Find the line currents.	3				
5	Name the losses in a transformer.	2				
6	Mention various types of dc generators.	2				
7	Draw the schematic diagram of a star-delta starter for a three phase induction motor.	3				
8	Mention various applications of a dc series motor.	2				
9	What is a circuit breaker?	2				
PART – B (5x10 = 50 Marks)						
10	a) State and explain superposition theorem.	5				

b) Find the resistance connected between terminals A and B.

- 11 A resistance of 10 Ω is connected in series with an inductance of 0.05 H and a capacitance of 300µF to a 100V, 1-w ac supply. Calculate the magnitude and phase angle of the current when the frequency of the supply is (a) 25 Hz, (b) 50 Hz.
 10
- 12 Draw a neat sketch and explain in detail how three phase power is measured by two wattmeters.

5

Code No. 3502

10

10

3

- 14 A 18.65 kW, 4-pole, 50 Hz, three phase induction motor has friction and windage losses of 2.6% of the output and full load slip is 4.2%. Find the following:
 - i) The rotor copper loss
 - ii) The rotor input
 - iii) The output torque
 - iv) The gross mechanical torque developed in the rotor.
- 15 a) What are the various types of tariffs in electrical power systems and what are their advantages and disadvantages?
 - b) What are the causes of low power factor and what are its disadvantages?

16 Write short notes on:

a) Open and short circuit tests on a transformer.b) Capacitor start and capacitor run motor.5
