FACULTY OF ENGINEERING \& INFORMATICS

B.E. I-Year (Backlog) Examination, June / July 2017

Subject : Engineering Mechanics
Time : 3 hours
Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART - A (25 Marks)

1 Define moment of a couple. Give an example.
2 State the principle of transmissibility and Varignon's theorem.
3 Write the equilibrium equations in spatial system of forces.
4 Write short note on cone of friction.
5 The centroid of a semi-circular arc of radius r is :
a) $4 r / 3 \pi$
b) $3 r / 4 \pi$
c) $2 r / \pi$
d) $2 \pi / r$

6 State and prove the perpendicular axis theorem of MI.
7 State the D' Alembert's principle. 2
8 Differentiate between kinematics and kinetics of a particle motion.
9 The kinetic energy of a rotating body depends on \qquad and \qquad .
10 A spring is stretched by 60 mm by the application of a force. Find the work done, if the force required to stretch 1 mm of the spring is 10 N .

> PART - B (50 Marks)

11 a) Determine the resultant of the concurrent forces shown in Fig. 1.

Fig 1.
b) Find the least value of force P required to overcome an obstacle 20 cm high to a roller weighing 100 kN and 40 cm radius. Also, find the reaction at the block?

12 For the system shown in figure.3, the force multiplier of P acting from A to E is $\mathrm{Pm}=100 \mathrm{~N} / \mathrm{m}$. Determine the following.

a) Component of force P along AC
b) Moment of P about C .

13 Two blocks of weights W_{1} and W_{2} connected with a string rest on a rough incline as shown in fig.4. If the co-efficient of friction are 0.2 and 0.25 for the blocks respectively and $W_{1}=W_{2}=75 \mathrm{~N}$, find the value of angle of slope ' α ' for which sliding will impend.

14 a) State and prove the PAPPU's theorem I and II.
b) Locate the Centroid of hatched plate about the axes shown in fig. 5 .

fig (5)

15 Determine the distance moved by A in changing the velocity from $2 \mathrm{~m} / \mathrm{s}$ to $4 \mathrm{~m} / \mathrm{s}$. refer the figure. 6.

16 Two masses ($m_{1}=30 \mathrm{~kg}, \mathrm{~m}_{2}=15 \mathrm{~kg}$) are interconnected with an inextensible cord as shown in fig.(7), considering coefficient of friction in contact surfaces as 0.3 , determine the acceleration and tension of the string.

17 a) Derive from first principles the moment of inertia of a right angled triangle about the base.
b) A 12 m bar of negligible weight rests in a horizontal position on the smooth inclines as shown in fig.8. Compute the distance ' x ' at which load, $T=150 \mathrm{~N}$ should be placed from right end of the bar to keep it horizontal.

fig (8)
