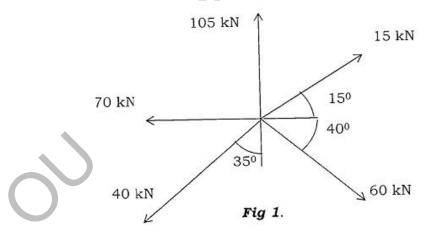
FACULTY OF ENGINEERING & INFORMATICS

B.E. I-Year (Backlog) Examination, June / July 2017

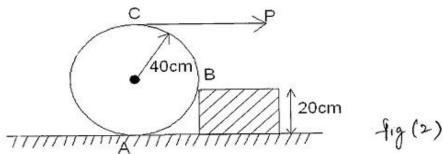
Subject : Engineering Mechanics

Time : 3 hours

Max. Marks : 75

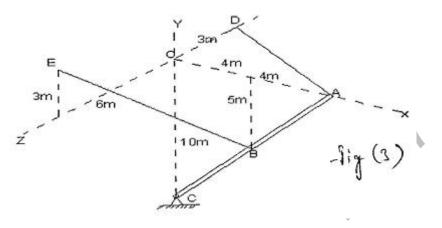

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART - A (25 Marks)


1	Define moment of a couple. Give an example.	2
2	State the principle of transmissibility and Varignon's theorem.	3
3	Write the equilibrium equations in spatial system of forces.	3
4	Write short note on cone of friction.	2
5	The centroid of a semi-circular arc of radius r is :	
	a) $4r/3\pi$ b) $3r/4\pi$ c) $2r/\pi$ d) $2\pi/r$	2
6	State and prove the perpendicular axis theorem of MI.	3
7	State the D' Alembert's principle.	2
8	Differentiate between kinematics and kinetics of a particle motion.	3
9	The kinetic energy of a rotating body depends on and	2
) A spring is stretched by 60 mm by the application of a force. Find the work done,	
	if the force required to stretch 1 mm of the spring is 10 N.	3

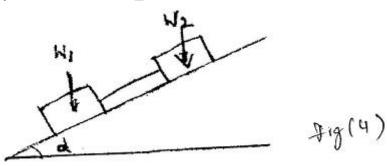
PART – B (50 Marks)

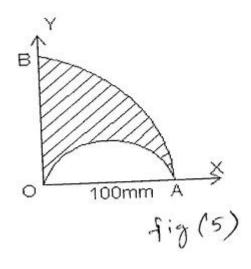
11 a) Determine the resultant of the concurrent forces shown in Fig.1.



b) Find the least value of force P required to overcome an obstacle 20cm high to a roller weighing 100 kN and 40cm radius. Also, find the reaction at the block?

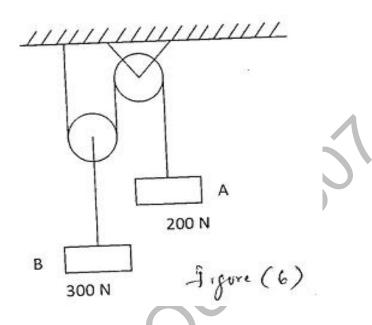
5


12 For the system shown in figure.3, the force multiplier of P acting from A to E is Pm = 100 N/m. Determine the following. 5+5


a) Component of force P along AC

b) Moment of P about C.

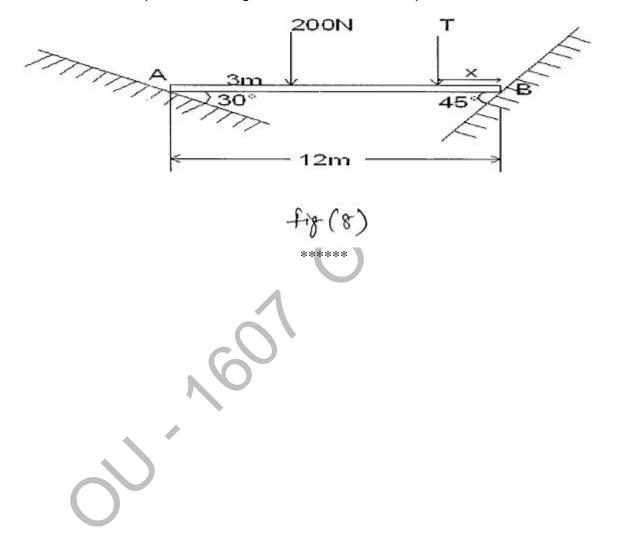
13 Two blocks of weights W_1 and W_2 connected with a string rest on a rough incline as shown in fig.4. If the co-efficient of friction are 0.2 and 0.25 for the blocks respectively and $W_1 = W_2 = 75$ N, find the value of angle of slope ' α ' for which sliding will impend.


- 14 a) State and prove the PAPPU's theorem I and II.
 - b) Locate the Centroid of hatched plate about the axes shown in fig.5.

..3


4

10



15 Determine the distance moved by A in changing the velocity from 2 m/s to 4 m/s. refer the figure.6.

16 Two masses ($m_1 = 30$ kg, $m_2 = 15$ kg) are interconnected with an inextensible cord as shown in fig.(7), considering coefficient of friction in contact surfaces as 0.3, determine the acceleration and tension of the string.

- 17 a) Derive from first principles the moment of inertia of a right angled triangle about the base.
 - b) A 12m bar of negligible weight rests in a horizontal position on the smooth inclines as shown in fig.8. Compute the distance 'x' at which load, T = 150 N should be placed from right end of the bar to keep it horizontal.

5