FACULTY OF ENGINEERING

B.E. I - Semester (Suppl.) Examination, June / July 2017
 Subject: Engineering Mathematics - I

Time: 3 Hours
Max.Marks: 70
Note: Answer all questions from Part A and any five questions from Part B.

PART - A (20 Marks)

1 Define rank of a matrix. Give an example of a $2 x 3$ matrix whose rank is 2.
2 Write the symmetric matrix for the quadratic form $Q=x^{2}+2 y^{2}+3 z^{2}-2 x y+4 y z+6 z x$. 2
3 Test the convergence of the series $\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}+n}+\frac{1}{n}\right)$.
4 State Leibnitz's test.
5 Find the radius of curvature at the origin of the curve $x^{4}-4 x^{3}-18 x^{2}-y=0$.
6 Obtain the equation of envelope of the family of straight lines $\frac{x}{a}+\frac{y}{b}=1$, where the parameters a and b are connected by the relation $\mathrm{ab}=4$.
7 Evaluate $(x, y) \rightarrow(1,2) \frac{x^{2} y}{x+y^{2}}$.
8 Find $\frac{d w}{d t}$ if $w=x^{2}+y^{2}, x=\cos ^{2} t, y=\sin ^{2} t$ at $t=\frac{\pi}{4}$.
9 Find the normal vector and unit normal vector to the surface $z^{2}=x^{2}-y^{2}$ at $(2,1, \sqrt{3})$.
10 Show that the vector $e^{x+y-2 z}(\hat{i}+\hat{j}+\hat{k})$ is solenoidal.
PART - B (5x10 = 50 Marks)
11 a) Find the values of a and b such that the equations $x+y+z=6, x+2 y+3 z=10$, $x+2 y+a z=6$ have (i) no solution, ii) unique solution and (iii) infinite solutions.
b) Find the characteristic equation of the matrix $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$ and hence find the matrix represented by $A^{8}-5 A^{7}-A^{6}-5 A^{5}-A^{4}+6 A^{2}+I$.

12 a) Test the convergence or divergence of the series $1+\frac{1}{2^{2}}+\frac{2^{2}}{3^{3}}+\frac{3^{3}}{4^{4}}+\frac{4^{4}}{5^{5}}+\cdots--$.
b) Prove that the series $\sum(-1)^{n-1} \frac{\sin n x}{n^{2}}$ converges absolutely.

13 a) Using Lagrange's mean value theorem, prove that $\frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}}$, $0<a<b$.
b) Sketch the graph of the curve $y=\frac{x}{\sqrt{x^{2}+1}}$.

14 a) If $f(x, y)=\left\{\begin{array}{ll}\frac{x^{2} y(x-y)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$, show that $\frac{\partial^{2} f}{\partial x \partial y} \neq \frac{\partial^{2} f}{\partial y \partial x}$ at $(0,0)$.
b) Obtain the Taylor series expansion of the function $f(x, y)=e^{2 x+y}$ about $(0,0)$ upto third degree terms.

15 a) Prove that $\nabla(\ell n r)=\frac{\vec{r}}{r^{2}}$, where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$.
b) Evaluate $\iint_{S} \vec{F} \cdot \hat{n}$ ds, where $\vec{F}=6 z \hat{i}-4 \hat{j}+y \hat{k}$ and S is the portion of the plane $2 x+3 y+6 z=12$ in the first octant.

16 Find the eigen values and the corresponding eigen vectors of the matrix

$$
A=\left(\begin{array}{ccc}
3 & 1 & -1 \\
-2 & 1 & 2 \\
0 & 1 & 2
\end{array}\right)
$$

17 a) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n^{2}+1}} x^{n}, x>0$.
b) Find the value of $\oint_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$, where C is the boundary of the region defined by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}+\mathrm{y}=1$ by Green's theorem.

