FACULTY OF ENGINEERING

B.E. I – Semester (Suppl.) Examination, June / July 2017

Subject: Engineering Mathematics – I

Time: 3 Hours

Max.Marks: 70

Note: Answer all questions from Part A and any five questions from Part B.

PART – A (20 Marks)

1	Define rank of a matrix. Give an example of a 2x3 matrix whose rank is 2.	2
2	Write the symmetric matrix for the quadratic form $Q = x^2 + 2y^2 + 3z^2 - 2xy + 4yz + 6zx$.	2
3	Test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + n} + \frac{1}{n} \right)$.	2
4	State Leibnitz's test.	2
5	Find the radius of curvature at the origin of the curve $x^4 - 4x^3 - 18x^2 - y = 0$.	2
6	Obtain the equation of envelope of the family of straight lines $\frac{x}{a} + \frac{y}{b} = 1$, where the	
	parameters a and b are connected by the relation $ab = 4$.	2
7	Evaluate $\lim_{(x, y) \to (1, 2)} \frac{x^2 y}{x + y^2}.$	2
8	Find $\frac{dw}{dt}$ if $w = x^2 + y^2$, $x = \cos^2 t$, $y = \sin^2 t$ at $t = \frac{f}{4}$.	2
9	Find the normal vector and unit normal vector to the surface $z^2 = x^2 - y^2$ at (2, 1, $\sqrt{3}$).	2
10	Show that the vector $e^{x+y-2z} \left(\hat{i} + \hat{j} + \hat{k} \right)$ is solenoidal.	2

PART - B (5x10 = 50 Marks)

- 11 a) Find the values of a and b such that the equations x + y + z = 6, x + 2y + 3z = 10, x + 2y + az = 6 have (i) no solution, ii) unique solution and (iii) infinite solutions.
 - b) Find the characteristic equation of the matrix $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ and hence find the matrix represented by $A^8 5A^7 A^6 5A^5 A^4 + 6A^2 + I$.

5

5

5

5

5

5

5

- 12 a) Test the convergence or divergence of the series $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \frac{4^4}{5^5} + \cdots$ 5
 - b) Prove that the series $\sum (-1)^{n-1} \frac{\sin n x}{n^2}$ converges absolutely.

13 a) Using Lagrange's mean value theorem, prove that $\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}$, 0 < a < b.

b) Sketch the graph of the curve $y = \frac{x}{\sqrt{x^2 + 1}}$.

14 a) If
$$f(x, y) = \begin{cases} \frac{x^2 y(x - y)}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
, show that $\frac{\partial^2 f}{\partial x \partial y} \neq \frac{\partial^2 f}{\partial y \partial x}$ at $(0, 0)$. 5

b) Obtain the Taylor series expansion of the function $f(x, y) = e^{2x+y}$ about (0, 0) upto third degree terms.

15 a) Prove that
$$\nabla(\ell nr) = \frac{\vec{r}}{r^2}$$
, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$. 5

- b) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} \, ds$, where $\vec{F} = 6z\hat{i} 4\hat{j} + y\hat{k}$ and S is the portion of the plane 2x + 3y + 6z = 12 in the first octant.
- 16 Find the eigen values and the corresponding eigen vectors of the matrix

$$A = \begin{pmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}.$$
 10

17 a) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n^2+1}} x^n$, x > 0. 5

b) Find the value of $\oint_c (3x^2 - 8y^2) dx + (4y - 6xy) dy$, where C is the boundary of the

region defined by x = 0, y = 0, x + y = 1 by Green's theorem. 5