FACULTY OF ENGINEERING AND TECHNOLOGY

B.E. / B.Tech. (Bridge Course) II-Semester (Backlog) Examination, June / July 2017
 Subject : Mathematics

Time : 3 hours
Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART - A (25 Marks)

1 A coin is tossed once. Find the probability of getting a head.
2 If $P(A)=\frac{3}{8}, P(B)=\frac{1}{2}$ and $P(A \cap B)=\frac{1}{4}$, find $P(A \cup B)$.
3 State Rolle's theorem.
4 Find the radius of curvature of the circle $x^{2}+y^{2}=9$ at $(3,0)$.
5 Evaluate $\int \frac{2 x+4}{x^{2}+4 x+2} d x$
6 Evaluate $\int_{0}^{1} \int_{0}^{1}(x+y) d x d y$
7 Find a unit normal vector to the surface $x y z=4$ at $(1,2,2)$.
8 Find the value of ' a ' such that the vector $\vec{F}=(x+3 y) \hat{i}+(y-2 z) \hat{j}+(x+a z) \hat{k}$ is solenoidal.
9 State the relation between beta and gamma functions.
10 Define error function. Show that $\operatorname{erf}(-x)=-\operatorname{erf}(x)$.
PART - B (50 Marks)
11 a) Calculate the mean and standard deviation for the following data giving the age distribution of 542 members.

Age (in years)	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No. of members	3	61	132	153	140	51	2

b) If $P(A)=0.4, P(A \cup B)=0.7$ and A, B are independent events, find $P(B)$.

12 a) State and prove Lagrange's mean value theorem.5
b) Find the envelope of the family $\frac{x}{a} \cos \alpha+\frac{y}{b} \sin \alpha=1$, where α is a parameter. 5

13 a) Evaluate $\iint_{R} x y d x d y$ over the area between $y=x^{2}$ and $y=x$.
b) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d y d x d z$.

14 a) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at $(2,-1,2)$.
b) If $\vec{F}=2 x y z \hat{i}+x z \hat{j}+3 x^{2} y \hat{k}$, then find $\nabla \cdot \vec{F}$ and $\nabla x \vec{F}$.

15 a) Evaluate $\int_{0}^{\infty} \sqrt{x} e^{-x^{2}} d x$ using gamma function.
b) Show that $\beta(m, n)=\beta(m+1, n)+\beta(m, n+1)$.

16 a) State and prove addition theorem of probability.
b) Expand $f(x)=e^{x} \sin x$ in Taylor series about $x=0$.

17 Verify Green's theore form $\oint_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y=0$, where C is the boundary of the region defined by $y=x^{2}$ and $y^{2}=x$.

