FACULTY OF ENGINEERING AND TECHNOLOGY

B.E. / B.Tech. (Bridge Course) II-Semester (Backlog) Examination, June / July 2017

Subject : Mathematics

Time : 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

	PART – A (25 Marks)					
1	A coin is tossed once. Find the probability of getting a head.					
2	If $P(A) = \frac{3}{8}$, $P(B) = \frac{1}{2}$ and $P(A \cap B) = \frac{1}{4}$, find $P(A \cup B)$.					
3 4	State Rolle's theorem. Find the radius of curvature of the circle $x^2 + y^2 = 9$ at (3, 0).					
5	Evaluate $\int \frac{2x+4}{x^2+4x+2} dx$					
6	Evaluate $\int_{0}^{1} \int_{0}^{1} (x + y) dx dy$					
7	Find a unit normal vector to the surface xyz = 4 at (1, 2, 2).					
8	8 Find the value of 'a' such that the vector $\vec{F} = (x+3y)\hat{i} + (y-2z)\hat{j} + (x+az)\hat{k}$ is solenoidal.					
9	 State the relation between beta and gamma functions. Define error function. Show that erf(x) = erf(x) 					
 PART – B (50 Marks) 11 a) Calculate the mean and standard deviation for the following data giving the age distribution of 542 members. 						
	Age (in years) 20-30 30-40 40-50 50-60 60-70 70-80 80-90					
	No. of members 3 61 132 153 140 51 2					
	b) If $P(A) = 0.4$, $P(AUB) = 0.7$ and A, B are independent events, find $P(B)$. 5					
12	2 a) State and prove Lagrange's mean value theorem. 5					
	b) Find the envelope of the family $\frac{x}{r}\cos + \frac{y}{s}\sin = 1$, where r is a parameter. 5					

b) Find the envelope of the family $\frac{x}{a}\cos + \frac{y}{b}\sin = 1$, where r is a parameter.

13 a)	Evaluate	$\iint xy dx dy \text{ over the area between } y = x^2 \text{ and } y = x.$	5
b)	Evaluate	$\int_{-1}^{R} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz \ .$	5

..2

ind the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at 2, -1, 2).	5				
$\vec{F} = 2xyz \hat{i} + xz\hat{j} + 3x^2y\hat{k}$, then find $\nabla \cdot \vec{F}$ and $\nabla x \vec{F}$.	5				
Evaluate $\int_{0}^{\infty} \sqrt{x} e^{-x^2} dx$ using gamma function.	5				
Show that $\beta(m,n) = \beta(m+1,n) + \beta(m,n+1)$.	5				
State and prove addition theorem of probability. Expand $f(x) = e^x \sin x$ in Taylor series about $x = 0$.	5 5				
by Green's theore form $\oint_C (3x^2 - 8y^2) dx + (4y - 6xy) dy = 0$, where C is the					
ndary of the region defined by $y = x^2$ and $y^2 = x$.	10				

	ind the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at $z, -1, 2$. $\vec{F} = 2xyz \hat{1} + xz\hat{1} + 3x^2y\hat{k}$, then find $\nabla \cdot \vec{F}$ and $\nabla x \vec{F}$. valuate $\int_{0}^{\infty} \sqrt{x} e^{-x^2} dx$ using gamma function. how that $\beta(m,n) = \beta(m+1,n) + \beta(m,n+1)$. tate and prove addition theorem of probability. xpand f(x) = $e^x \sin x$ in Taylor series about x = 0. y Green's theore form $\oint_{C} (3x^2 - 8y^2) dx + (4y - 6xy) dy = 0$, where C is the dary of the region defined by $y = x^2$ and $y^2 = x$. ******				