FACULTY OF ENGINEERING

B.E. I-Semester (Suppl.) Examination, June / July 2017

Subject : Engineering Mechanics-I
Max. Marks: 70

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART - A (20 Marks)

1 Define a couple and write any two characteristics. 2
2 Express the force vector of a 100 kN force, passing from point $\mathrm{A}(2,4,1)$ to point $\mathrm{B}(6$, 7,8) and also write its unit vector.
3 Show how a non-concurrent force acting on a body can be replaced by an equivalent force couple.
4 Write the static equilibrium equations for non-concurrent co-planar force system. 2
5 Write the basic assumptions for using method of joints of analysis of pin jointed trusses.
6 Find out the forces in the members AC \& BC of the truss shown in Fig. 1

7 Define cone of friction. 2
8 Differentiate dynamic friction from static friction. 2
9 Determine the centroid of the triangle ($\mathrm{b} \times \mathrm{h}$) about the base from basic principles. 2
10 Define polar moment of inertia.

PART - B (50 Marks)

11 A force F passing though C produces a clockwise moment of 600 N.cm about A and a counter clockwise moment of 300 N.cm about B as in Fig. 2 shown below. Determine the moment F about O .

Fig. 2

12 In the force system shown in Fig.3, it is found that the force multiplier of force F acting from B to D is $f_{m}=150 \mathrm{~N} / \mathrm{m}$. Find the following :
a) Component of F along $A C$ and
b) Moment of F about an axis directed from A to E.

13 Find out the forces in all the members of the truss shown in Fig. 4 and make a tabular form mentioning nature of the force in each member.

14 A uniform bar $A B$, 10 m long and weighing 280 N , is hinged at B and rests upon a 400 N block at A as shown in Fig. 5 if the coefficient of friction is 0.40 at all contact surfaces, find the horizontal force P required to start moving the 400 N block?

15 Locate the centroid of the shaded area ABCO from xy axes as shown in Fig. 6 below.

16 Find the moment of inertia of the culvert (shaded portion as shown in Fig.7) about the indicated xx axis and its centroidal axis. Take culvert height as 300 mm .

Fig. 7
17 Bar $A B$ of negligible weight is subjected to a vertical force of 3 kN and a horizontal force of 1.5 kN applied as shown in Fig.8. Find the angle ' θ ' at which equilibrium exists. Assume both the supporting surfaces as smooth surfaces.

Fig. 8

