Code No. 3445

FACULTY OF ENGINEERING \& TECHNOLOGY

B.E. (Bridge Course) II-Semester (Backlog) Examination, June / July 2017

Subject : Engineering Mechanics
Time : 3 hours
Max. Marks : 75
Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

> PART - A (25 Marks)

1 Write the static equilibrium equations for non-concurrent and non co-planar force system.
2 The component of a force $3 i+5 k$ along a line $4 j+3 k$ is:
a) 3
b) 4
c) 5
d) Zero

3 Define the terms angle of friction and cone of friction.
4 The centroid of a semi-circular arc of radius r is :
a) $4 r / 3 \pi$
b) $3 r / 4 \pi$
c) $2 r / \pi$
d) $2 \pi / r$

5 Write whether the following statement are true or false :
a) The reactions at supports of a beam will be considered as internal forces for drawing its free body diagram.
b) The frictional resistances in rolling are lesser than static friction.
c) Parallel axes theorem is $\mathrm{I}_{\mathrm{cg}}=\mathrm{I}_{\mathrm{xx}}+$ ah with usual notation.

6 State and prove the parallel axis theorem.
7 The motion of a particle is given by the equations, $x=t^{3}-15 t^{2}-20$, where x is displacement in meters and t is in sec. determine the acceleration of particle after 4 sec .
8 Differentiate between kinematics and kinetics of a particle motion.
9 Determine the work done in pulling a block of wood weighing 100 kN for a length of 10 m up on a smooth inclined plane which makes 30° with the horizontal.
10 Compound pendulum is an example of \qquad motion.

11 a) In Fig. 1 a force P passing through C produces a clockwise moment of 600 $\mathrm{N}-\mathrm{Cm}$ about ' A ' and a counterclockwise moment of $300 \mathrm{~N}-\mathrm{Cm}$ about ' B '. Determine the moment of P about ' O '.

Fig. 1.
b) Find the resultant for concurrent co-planar force system shown in Fig.2.

12 For the system shown in Fig.3, the force multiplier of P acting from A to E is $\mathrm{Pm}=100 \mathrm{~N} / \mathrm{m}$. Determine the following :

a) Component of force P along AC .
b) Moment of P about C .

13 A 100N cylinder shown in Fig. 4 is held at rest by a weight ' P ' suspended from chord wrapped around the cylinder if the slipping impends between the cylinder and the inclined, determine the value of ' P ' and also the co-efficient of friction.

14 a) State and prove the PAPPU's theorem-I and II.
b) Locate the centroid of hatched plate about the axes shown in fig. 5 .

Fig. 5
15 a) Derive from first principles the moment of inertia of a right angled triangle about the base.
b) Calculate the moment of Inertia of T-section shown below, about Centroidal X-axis.

16 a) State 'D’ Alembert principle.
b) The location of a particle defined as $r=5+7 t^{2}$ and $\theta=6+3 t^{2}$. Determine the magnitude of velocity and the accelerations of the particle at $t=4 \mathrm{sec}$.

17 a) Derive work energy equation for translation.
b) In a particular SHM performed by a particle of mass m , the amplitude is 160 cm and time period of oscillation is 4 sec . determinate the time required by the particle to pass two points at 1.4 m and at 0.5 m away from the central point of oscillation. Both the points lie on the same side of this central point.

