FACULTY OF ENGINEERING	
B.E. 2/4 (CSE) I – Semester (Backlog) Examination, December 2017	
Time:3 Hours Max.Marks	: 75
Note: Answer all questions from Part A and any five questions from Part B.	
PART – A (25 Marks)	
1 Define the law of duality. Obtain the dual for $(P \cap -Q) \cap (R \rightarrow Q)$.	3
2 Convert "All apples are not red" to a symbolic form.	2
3 Find the no. of derangements for 1,2,3,4. List all derangements of 1,2,3,4.	3
4 In how many ways can four letters of alphabets "BETTER" be arranged?	2
5 Find the co-efficient of x^{15} in $(x^3+x^4+x^5+)^5$.	3
6 Find a sequence for the generating function $1/(1-2X)^n$.	2
7 Define lattice. Give an example.	3
8 What is semi group homomorphism?	2
9 What is a Hamiltonian graph? Give an example.	3
10 Find the degree of a complete graph (k_4) .	2
PART – B (5x10 = 50 Marks)	
 11 a) Show the validity of the statement (~p∨q) → r r → (s∨t) ~s ∧ ~u ~u → ~t ∴ p b) Prove that for any propositions p, q, r the compound statement 	5
$[(p \rightarrow q) \land (q \rightarrow r) \rightarrow [p \rightarrow r]$ is a tautology.	
12 Let f: $R \rightarrow R$ be defined by	10
f(x) = 3x-5, x > 0 = -3x+1, x < = 0 i) Determine f(0), f(-1), f(5/3) and f(-5/3) ii) Determine f ¹ (0), f ¹ (3), f ¹ (-6), f ¹ [-5,5]	
13 Solve the recurrence relation $T(k) - 7T(k-1) + 10T(k-2) = k^2+1$ and $T(0)=4$, $T(1)=$	17? 10

Code No. 52

14 If $\langle G, * \rangle$ is an Abelian group then prove that $(a * b)^n = a^n * b^n$ for all n $\in \mathbb{N}$.

...2

10

Code No. 52

-2-

15 Explain and apply Prim's algorithm for the figure given below and find minimal cost. 10

16 a) Find the rook polynomial for shaded board.

服装				
	245 24.5		1	大田間に
	1999 (A) 14	C. Contraction		States -

- b) For any n \in Z+, prove that the integers 8n +3 and 5n+2 are relatively prime.
- 17 a) Prove the following statement by using mathematical induction.

$$1^{2} + 3^{2} + 5^{2} + \dots (2n-1)^{2} = (n)(2n-1)(2n+1)/3.$$

b) List out the properties of Abelian group with an example

5

5

5