FACULTY OF ENGINEERING

B.E. 2/4 (CSE) I - Semester (Backlog) Examination, December 2017 Subject: Discrete Structures

Time:3 Hours
Max.Marks: 75

Note: Answer all questions from Part A and any five questions from Part B.
 PART - A (25 Marks)
 1 Define the law of duality. Obtain the dual for $(P \cap-Q) \cap(R \rightarrow Q)$. 3

2 Convert "All apples are not red" to a symbolic form. 2
3 Find the no. of derangements for 1,2,3,4. List all derangements of 1,2,3,4. 3
4 In how many ways can four letters of alphabets "BETTER" be arranged? 2
5 Find the co-efficient of x^{15} in $\left(x^{3}+x^{4}+x^{5}+\ldots\right)^{5}$. 3
6 Find a sequence for the generating function $1 /(1-2 X)^{n}$. 2
7 Define lattice. Give an example. 3
8 What is semi group homomorphism? 2
9 What is a Hamiltonian graph? Give an example. 3
10 Find the degree of a complete graph $\left(\mathrm{k}_{4}\right)$. 2

$$
\text { PART - B (5x10 = } 50 \text { Marks })
$$

11 a) Show the validity of the statement

$$
\begin{aligned}
& (\sim p \vee q) \rightarrow r \\
& r \rightarrow(s \vee t) \\
& \sim s \wedge \sim u \\
& \sim u \rightarrow \sim t \\
& \therefore p
\end{aligned}
$$

b) Prove that for any propositions p, q, r the compound statement $[(p \rightarrow q) \wedge(q \rightarrow r) \rightarrow[p \rightarrow r]$ is a tautology.

12 Let $f: R \rightarrow R$ be defined by

$$
\begin{aligned}
f(x) & =3 x-5, x>0 \\
& =-3 x+1, x<=0
\end{aligned}
$$

i) Determine $f(0), f(-1), f(5 / 3)$ and $f(-5 / 3)$
ii) Determine $f^{1}(0), f^{1}(3), f^{1}(-6), f^{1}[-5,5]$

13 Solve the recurrence relation $T(k)-7 T(k-1)+10 T(k-2)=k^{2}+1$ and $T(0)=4, T(1)=17$?

14 If $<G, *>$ is an Abelian group then prove that $(a * b)^{n}=a^{n} * b^{n}$ for all $n \in N$.

Code No. 52
-2-

15 Explain and apply Prim's algorithm for the figure given below and find minimal cost.
50
15

16 a) Find the rook polynomial for shaded board.

b) For any $n \in Z_{+}$, prove that the integers $8 n+3$ and $5 n+2$ are relatively prime.

17 a) Prove the following statement by using mathematical induction.

$$
1^{2}+3^{2}+5^{2}+\ldots . .(2 n-1)^{2}=(n)(2 n-1)(2 n+1) / 3 .
$$

b) List out the properties of Abelian group with an example

