# B.E. (Civil) III – Semester (CBCS) (Main) Examination, December 2017

### Subject: Engineering Geology

### Time: 3 Hours

Max.Marks: 70

5

Note: Answer all questions from Part A and any five questions from Part B.

### **PART – A (10x2 = 20 Marks)**

Unconfined compressive strength (N/mm<sup>2</sup>)

< 25

ii) 25 – 100

iii) 100 – 150

iv) 150 – 250

v) > 250

i)

- 1 What is porphyritic texture? Give one example.
- 2 Draw a net sketch of fault and label it.
- 3 List out goldrich series of minerals.
- 4 Match the following:
  - Grade of weathering
    - a) Fresh
    - b) Slightly weathered
    - c) Moderately weathered
    - d) Strongly weathered
    - e) Very strongly weathered
- 5 What is reservoir? List out problems of reservoir.
- 6 Explain payline and over break of tunnel.
- 7 Illustrate the geology of an Indian Tunnel that you know?
- 8 Explain disaster management cycle.
- 9 Draw net sketch of stress-strain behaviour of marble.
- 10 List out photo interpretation elements.

# PART – B (5x10 = 50 Marks)

- 11 Describe the identification characteristics, engineering properties and constructional use of:
  - a) Grainite b) Basalt c) Sanstone d) Marble 10
- 12 What is fault? Explain classification of faults and add a note on mechanism of faulting. 10
- 13 a) How do you determine grade of rock weathering by petrographic and rock testing. 5
  - b) Describe the most dominant soil types of India.

| 14 a) W            | What are aquifers? Describe types of aquifers with neat sketches.                            | 5  |
|--------------------|----------------------------------------------------------------------------------------------|----|
| b) Ev<br>fo        | Evaluate the abundance of groundwater availability in different litho logical ormations.     | 5  |
| 15 a) D            | Describe the field procedures for vertical electrical sounding survey.                       | 5  |
| b) D               | Describe the method of interpretation of aerial photos.                                      | 5  |
| 16 Discu<br>accor  | cuss the various problems in tunneling. Suggest the necessary solutions ordingly.            | 10 |
| 17 Identi<br>earth | htify the elements at risk, causes, typical effects and main mitigation measures of hquakes. | 10 |
|                    |                                                                                              |    |

# B.E. (EE/Inst.) III - Semester (CBCS) (Main) Examination, December 2017 Subject: Prime Movers and Pumps

### Time: 3 Hours

Max. Marks: 70

**Note:** Answer all questions from Part A and any five questions from Part B.

### PART-A (20 Marks)

| 1.  | Define Newtonian and Non Newtonian fluids?                                                                                                                                                                                                                | 2      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 2.  | Classify the Turbines? On the basis of Head flow                                                                                                                                                                                                          | 2      |
| 3.  | What is slip in Reciprocating pumps?                                                                                                                                                                                                                      | 2      |
| 4.  | Define the Equation of Continuity?                                                                                                                                                                                                                        | 2      |
| 5.  | What are the effects of Cavitations?                                                                                                                                                                                                                      | 2      |
| 6.  | Write the differences between Water tube and Fire tube Boilers?                                                                                                                                                                                           | 2      |
| 7.  | Enumerate the various uses of Gas Turbine?                                                                                                                                                                                                                | 2      |
| 8.  | State methods of increasing thermal efficiency of Rankine cycle?                                                                                                                                                                                          | 2      |
| 9.  | Write expression for head lost due to friction in suction and delivery pipes?                                                                                                                                                                             | 2      |
| 10  | . Define Reynolds number?                                                                                                                                                                                                                                 | 2      |
|     | PART-B (50 Marks)                                                                                                                                                                                                                                         |        |
| 11. | State Bernoulli's theorem? Derive expression for Bernoulli's theorem and state the assumptions made for such derivation?                                                                                                                                  | 10     |
| 12  | <ul><li>.a) Explain the difference between Francis and Kaplan Turbine?</li><li>b) Explain working Of Pelton wheel with Neat Sketch?</li></ul>                                                                                                             | 4<br>6 |
| 13  | . Define centrifugal Pump? Explain the working of single stage centrifugal pump with neat sketch?                                                                                                                                                         | 10     |
| 14  | Explain Rankine Cycle and Modified Rankine cycle with pressure velocity graphs?                                                                                                                                                                           | 10     |
| 15  | <ul><li>.a) Explain with the help of neat sketch single stage impulse turbine. Also explain pressure velocity variations along the axial direction?</li><li>b) Explain the difference between Impulse steam turbine and reaction steam turbine?</li></ul> | 6<br>4 |
| 16  | Explain Babcock & Wilcox Boiler with neat Sketch?                                                                                                                                                                                                         | 10     |
| 17  | a) What is air vessel? Describe the functions of air vessels for reciprocating pumps with neat sketch?                                                                                                                                                    | 5      |
|     | respectively. The rate of flow through the pie is $35$ lits/sec.section 1 is 6 meter; section 2 is 4 meter above datum line. If the pressure at section 1 is $4x10^3$ KN/m <sup>2</sup> find the pressure at section 2?                                   | 5      |

B.E (ECE) (CBCS) III – Semester (Main) Examination, December, 2017

Subject : Electronic Devices

Time : 3 Hours

Max Marks : 70

(2)

(2)

(2)

(3)

(5)

# Note: Answer all questions from Part – A & Any five questions from Part – B.

### Part - A (20 MARKS)

- 1. Obtain expression of Diode voltage and Calculate the diode voltage value for a silicon diode given  $I_0 = 1nA$ , I = 2 m A and  $V_T = 26mV$  (2)
- 2. Distinguish between avalanche and zener diode.
- 3. Justify the statement "A capacitor filter cannot be connected in series to a rectifier to obtain DC voltage". (2)
- 4. A bridge rectifier has RL=350<sup> $\Omega$ </sup> and Vm= 22 sin(100<sup> $\pi$ </sup> t). Calculate peak, average and rms value of current. (2)
- 5. Calculate the collector current in a BJT given  $I_b=30$  MicroAmp, Beta=100 and reverse saturation current  $I_{C0}=10$ nA. (2)
- 6. Draw the input and output characteristics of BJT in CE configuration
- 7. Illustrate the VI characteristics of SCR and explain the negative resistance region in it.
- 8. Which BJT amplifier configuration is known as a buffer and why?
- 9. Differentiate between enhancement and depletion mode MOS FET (2)
- 10. Given Id = 12mA, Idss=4mA and Vp=4.3V Calculate transconductance of FET. (2)

# Part - B (50 Marks)

| 11.a) | Explain the formation of potential barrier across a PN junction diode with no bias    |     |
|-------|---------------------------------------------------------------------------------------|-----|
|       | condition. Discuss the variation in width of this barrier with the applied voltage in |     |
|       | forward and reverse biased condition.                                                 | (5) |
| 1.1   |                                                                                       |     |

- b) Obtain the expression for diffusion capacitance in a step graded junction (5)
- 12.a) Analyze the operation of Full wave rectifier and show that its efficiency is double the efficiency of HWR (7)
  - b) Obtain critical inductance of an LC filter given RL = 100 ohms, and Fo=60 Hz
- 13.a) What is base width modulation and what are its consequences
  - b) For a self Bias Circuit shown below calculate the Q point and stability factor. Assume Beta =100 (5)



- 14.a) Compare the Performance of CE,CB and CC amplifier configurations (5)
  b) Calculate Ai,Ri, Av and Ro using exact analysis for the RC coupled common emitter BJTamplifier, assume hie = 1.1Kohm, hfe=50, hre = 2.5X10-4 and hoe=24X10-6. RL=4.7K ohm (5)
- 15.a) Explain the structure of JFET and obtain its transconductance and output resistance from its transfer and output characteristics respectively (5)
  - b) Determine the I<sub>DS</sub> and gm of an n-channel JFET having pinch off voltage  $V_p$ =-4v, I<sub>DSS</sub>=12mA for (i)V<sub>gs</sub>=0v, (ii)V<sub>gs</sub>=-2v and (iii)V<sub>gs</sub>=-5.0v. (5)
- 16. a) Draw an FWR with inductor filter and obtain the expression for its ripple factor (5)
  - b) Design a self bias circuit for Q point (6v, 1.5mA) and stability factor of 8. Given Vcc=12 volts and Beta=50.
     (5)

17. Write short notes on the following

a. Tunnel Diode

(2.5X4)

- c. Low frequency T model of BJT,
- b. Diode compensationd. Small signal model of JFET

\*\*\*\*\*\*

# B.E. (M/P) III – Semester (CBCS) (Main) Examination, December 2017

### Subject: Engineering Thermodynamics

Time: 3 Hours

Max.Marks: 70

Note: Answer all questions from Part A and any five questions from Part B.

### PART – A (10 x 2=20 Marks)

- 1 Explain macroscopic approach of thermodynamics.
- 2 What is a quasistatic process?
- 3 Give the mathematical expression for the first law of thermodynamics.
- 4 What is PMM1?
- 5 State Carnot's theorem.
- 6 Explain the term energy.
- 7 Explain the concept of phase change.
- 8 What is a pure substance?
- 9 Give the expression for air standard efficiency of otto cycle.
- 10 Give the relation between volumetric and gravimetric analysis.

# PART – B (5x10 = 50 Marks)

- 11 a) Explain second law of thermodynamics.
  - b) Explain the types of thermodynamic systems.
- 12 a) Prove that internal energy is a property of the system.
  - b) A mass of air has an initial pressure of 1.3 MN/m<sup>2</sup>, volume 0.014m<sup>3</sup> and temperature 135.
  - c) It is expanded until its final pressure is 275 kN/m<sup>2</sup> and its volume becomes 0.056m<sup>3</sup>. Determine
    - a) The mass of air
    - b) Law of expansion
    - c) Work transfer
    - d) Heat transfer

Take R = .287 KJ/kg K and C<sub>V</sub>=0.718 KJ/Kg K.

- 13 a) Explain equivalence of Kelvin Planck and Clausius statement.
  - b) Derive Helmholtz function.

- 14 a) Determine the specific liquid enthalpy and specific enthalpy of
  - 1) Dry saturated steam and
  - 2) Wet steam with dryness fraction 0.9 at a pressure of 0.8  $MN/m^2$ .
  - b) Compute the specific entropy of steam in the following states
    - a) Dry and saturated at 10 bar abs
    - b) Saturated at 8 bar 0.9 dry
    - c) Superheated at 12 bar abs and 300 C. Take Cp = 2.09.
- 15 a) Derive the expression for air standard efficiency for rankine cycle.
  - b) Explain Daltons law.
- 16 a) Explain clausius inequality.
  - b) Explain the corollaries of first law of thermodynamics.
- 17 a) Write down Maxwell relations.
  - b) Explain thermodynamic equilibrium.

### B.E. (AE) III - Semester (CBCS) (Main) Examination, December 2017 Subject: Automotive Electrical & Electronics Engg.

### Time: 3 Hours

Max. Marks: 70

2

3

3

3 3

2

Note: Answer all guestions from Part - A and any five guestions from Part - B.

### PART-A (20 Marks)

- 1. Why Lead acid battery is a called Lead acid battery?
- 2. Capacity of a battery is expressed by a term..... and why?
- 3. Which single unit regulator is requi9red for battery charging with a alternator system and 3 why?
- 4. Torque required at starting is in the range of
- 5. Speciality of Bendix drive is
- 6. Define third brush regulation
- ..... type of electronic engine 7. CDRI stands for ..... and executed by ... 3 management system 2
- 8. Why relay is incorporated in a starter motor?
- 9. How electronic collision system works?

# PART- B (50 Marks)

- 10.a) Briefly describe the salient characteristics of a battery.
  - b) Explain briefly HRD and cell gravity tests.
- 11 Describe with a neat sketch the Light beam adjusting tests How dazzling is caused and its prevention.
- 12.a) Explain principles and constructions of a motor and a dynamo.
  - b) Describe overrunning clutch system with a neat sketch.
- 13.a) Explain briefly shunt generator characteristics.
  - b) With a neat sketch, explain the working principle of a cut out system.
- 14.a) Where do you require a bridge rectifier and why?
  - b) Describe briefly engine electronics control, chassis electronic control and transmission electronic control.
- 15.a) Where stepper motors are used in automobile and why explain.
  - b) How precisely air mass flow is required to be controlled electronically and why?
- 16. Write short notes on the following:
  - a) 32 bit microprocessor control unit.
  - b) CDRI system.
  - c) Infra red brake control system.

\*\*\*\*\*\*

B.E. (CSE) III - Semester (CBCS)(Main) Examination, December 2017

### Subject : Data structures

Time : 3 Hours

Max. Marks: 70

Note: Answer all questions from Part-A and answer any five questions from Part-B.

### PART - A (2x10 = 20 Marks)

- 1 List the worst case time complexities in descending order O(nlogn), O(n), O(n<sup>2</sup>), (n<sup>2</sup>logn), O(2<sup>n</sup>), O(1).
- 2 Define the ADT for a Linked List.
- 3 List 3 differences between the usage of Array and a Linked list at real time.
- 4 Convert the below postfix expression into Infix? x y 4 5 z \* / 10 + 7 3 / 2 +.
- 5 With a neat diagram elaborate the drawback of a Binary Search Tree
- 6 Give 2 differences between B-Tree and AVL Tree.
- 7 List the various types of Graph representation techniques.
- 8 Define 2 Spanning Tree's from the graph given below



- 9 Justify, which sorting algorithm better suits for a smaller set of values?
- 10 Write pseudo code for Selection Sort?

### **PART-B (5x10 = 50 Marks)**

- 11 (a) Define a Sparse matrix. How can we represent a sparse matrix by effectively utilizing space? Write the logic
  - (b) Develop a program for developing a Singly Linked List.
- 12 (a) Define Skip List. Explain its benefits over linked list and define how is this connected to a tree.
  - (b) Using the operations of a Stack, implement a Queue data structure. Note: You can only use the functionalities of Push and Pop.

- 13 (a) Given the inorder and postorder traversals, construct a Binary Tree 4 5 6 7 8 10 11 12 13 ----- 6 5 7 4 11 12 10 13 8
  - (b) From the below AVL tree, delete the following nodes p, n, l, j, g, f, s and display the final AVL tree



14 (a) Given the following graph, compute the minimum spanning tree using Kruskal's algorithm



- (b) Demonstrate BFS starting from vertex 'c' using the graph above.
- 15 (a) Explain the working of Quick sort algorithm for sorting in descending order, when the given numbers are already sorted in the ascending order.
  - (b) Explain the working of a Merge Sort algorithm and write the recursive function for merge function call.
- 16 (a) Specify the conditions for identifying a circular linked list to be full and empty
  - (b) Demonstrate Hashing using chaining technique to resolve collisions.
- 17 Write short notes on any TWO of the following
  - (a) Insertion into BST {3, 6, 9, 1, 4, 2, 10, 12, 7} and delete root nodes until we have a complete binary tree of height 2.
  - (b) Prim's Algorithm
  - (c) Heap Sort using Min Heap

\*\*\*\*\*

### B.E (I.T) III-Semester (CBCS) (Main) Examination, December, 2017 Subject : Data Structures

### Time : 3 Hours

Max Marks : 70

Note: Answer all questions from Part – A & Any five questions from Part – B.

### Part - A (20 Marks)

- 1. Define Abstract Data Type and write Array ADT.
- 2. Differentiate performance analysis and performance measurement.
- 3. Write function to check whether a circular queue is full or not.
- 4. Differentiate between singly and doubly linked lists.
- 5. What is Sparse Matrix explain with example.
- 6. What is Hashing? Explain with example.
- 7. Differentiate Between Complete and Full Binary Tree.
- 8. Explain the Representation of Graphs with example.
- 9. Define Max Heap with example.
- 10. Explain About Best Computing Time For Sorting.

### Part - B (50 Marks)

| 11(a) Explain Various Asymptotic Notations with examples                                                                                                                          | (5+5)   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| <ul> <li>(b) Compute the best and worst case step count analysis for the following function:<br/>int sequential search (int *a, const int n, const int x)<br/>{ int i:</li> </ul> |         |
| for (i=0; i < n && a[i]! = x; i++);<br>if (i= =n) return – 1;<br>else return i ; }                                                                                                |         |
| 12 Write a Cult function for evolucting a postfix expression. Evolucto the expression                                                                                             |         |
| 4 5 2 * + using the Function. Show all steps of Evaluation                                                                                                                        | (10)    |
| <ul><li>13 (a) Explain about static hashing and Hash Functions.</li><li>(b) Explain about Linked stacks and its operations.</li></ul>                                             | (5+5)   |
| 14 Define BST. Create a binary search tree with the following keys and perform<br>In order, preorder, postorder traversals on it<br>10 12 20 32 50 55 65 80 99.                   | (10)    |
| 15 Explain Kruskal's Algorithm. Find minimum cost spanning tree for the following grap                                                                                            | h. (10) |

....2



16Write C++ function for quick sort .Trace the algorithm for the elements 10 80 30 90 40 50.Specify its timing complexity.

\*\*\*\*\*\*

- 17 Write short notes on the following
  - a) Threaded Binary Trees.
  - b) Summary of Internal Sorting.

(5+5)

(10)

### B.E. 2/4 (Civil) I – Semester (Backlog) Examination, December 2017 Subject: Building Planning and Drawing

# Time: 3 HoursMax. Marks: 75Note: Answer all questions from Part A and any five questions from Part B.

# PART-A (25 Marks)

| 1. | Draw the sign convention for brick?.                               | 3 |
|----|--------------------------------------------------------------------|---|
| 2. | State the advantage of sign conventions in building drawing?       | 3 |
| 3. | Define bond in brick work?                                         | 2 |
| 4. | State the importance of quoin header in brick masonry?             | 3 |
| 5. | How do you fix size of door and windows for residential houses?    | 2 |
| 6. | Can you classify different type of roofs?                          | 3 |
| 7. | How do you define tread, rise and soffit of a stair case?          | 3 |
| 8. | How can you explain the purpose of providing foundation?           | 2 |
| 9. | Can you define orientation of building?                            | 2 |
| 10 | . Why building bye laws are needed to be followed in construction? | 2 |
|    |                                                                    |   |

# PART-B (50 Marks)

4 10

| 11. Draw Plan, elevation and Isometric view of Flemish bond of 2 <sup>1/2</sup> brick wall      | 10 |
|-------------------------------------------------------------------------------------------------|----|
| 12. Draw elevation and sectional plan of partly Paneled and glazed window of size 800 X         |    |
| 1200 mm. size                                                                                   | 10 |
| 13. Draw Queen post truss to a span of 12000mm. Name the important parts and their              |    |
| standard dimensions                                                                             | 10 |
| 14. How would you classify different type of stair cases? Draw neat pictures off all type to of |    |
| stairs?10                                                                                       |    |
| 15. Can you differentiate between wall foundation and RC column foundation? Draw neat           |    |
| pictures of these two types of foundations                                                      | 10 |
| 16. How do you classify different principles of planning a building? Explain in detail about    |    |
| each type with neat sketches                                                                    | 10 |
| 17. A residential building is to be planned for a doctor with the following reuirements         | 10 |
| i. Living cum drawing hall                                                                      |    |
| ii. Master bed room with toilet                                                                 |    |
| iii. Second bed room                                                                            |    |
| iv. Kitchen and store                                                                           |    |
| v. Additional bath room and W.C                                                                 |    |
| vi. Stair case and portico                                                                      |    |
| The dimensions of the site are 15 mX 20 m and the road is on western side, Parallel to          |    |
| 15m side. The plinth area is not to exceed 125 sq m. A dopt moderate specifications.            |    |
| Draw plan sectional elevation of the building to a scale of 1.50                                |    |

\*\*\*\*\*\*

### B.E. 2/4 (EEE) I – Semester (Backlog) Examination, December 2017

### Subject: Electrical Circuits – I

### Time: 3 Hours

### Max.Marks: 75

### Note: Answer all questions from Part A and any five questions from Part B.

### PART – A (25 Marks)

- 1 What is super mesh analysis?
- 2 Determine the power absorbed by each resistor in the following circuit.



- 3 Draw the phasor diagram and impedance triangle for RL series circuit.
- 4 A series RL circuit with resistance R= $25\Omega$  and inductance L = 0.02 H is connected across a 250 V, 50 Hz single-phase AC supply. Calculate
  - i) The impedance
  - ii) Current
  - iii) Power factor and
  - iv) Power.
- 5 What is neutral shift voltage in a three phase system?
- 6 A balanced star-connected load of impedance (3+j4) ohms per phase is connected to a three-phase, 230V, 50 Hz supply. Find the line current and power absorbed by each phase.
- 7 What are the properties of incidence matrix?
  8 What are the conditions for maximum power transfer in AC circuits?
  9 What are the effects of series resonance?
  10 Write the expression for quality factor of parallel RLC circuit.

2

3

2

3

2

### PART - B (5x10 = 50 Marks)

11 In the circuit shown below, find the voltage across  $25 \Omega$  resistor and the power supplied by 5A source, by node analysis.



12 A 50µF capacitor is connected in parallel with a choke coil across a 200V, 50 Hz supply as shown below. Calculate the total current, branch currents, power factor and active power of the circuit.



- 13 A three-phase, four-wire system having a 230 V line-to-neutral connected to an unbalanced load having phase impedances of (4+j6) Ω, (3+j2) Ω and (5+j7) Ω. Calculate the current in neutral wire when phase sequence is (i) RYB and (ii) RBY.
  10
- 14 In the circuit shown below, determine the value of Z so that maximum power is transferred to it. Also determine the power.



10

10

15 For the circuit shown in figure below, find the ratio of output voltage,  $V_2$  to input voltage  $V_1$ .



16 Determine the node voltages of the circuit shown in figure below using cut-set schedule.



\*\*\*\*

17 Explain about measurement of three phase power by two-watt meter method.

10

### BE 2/4 (Inst.) I Semester (Backlog) Examination, Dec, 2017

### Subject : Network Theory

Time : 3 hours

Max. Marks : 75

### Note : Answer all questions from Part-A and Any Five Questions from Part-B

### PART – A

| 1<br>2.<br>3 | Sate and explain Norton's Theorem.<br>Define the terms Selectivity and Bandwidth. | (3M)<br>(3M)<br>(3M) |
|--------------|-----------------------------------------------------------------------------------|----------------------|
| 3.<br>4      | How does inductor behaves under steady state condition when applied across        | (3101)<br>a          |
|              | constant DC voltage source.                                                       | (2M)                 |
| 5.           | Define Duality.                                                                   | (2M)                 |
| 6.           | Write the relation between phase and line quantities for a 3-phase star connected | ed                   |
|              | circuit. (2M                                                                      | ۸)                   |
| 7.           | Explain mutual induction principle.                                               | (2M)                 |
| 8.           | Derive energy stored in inductor from basic equation.                             | (3M)                 |
| 9.           | Define RMS and Average value of sine wave.                                        | (2M)                 |
| 10           | . Find Z <sub>11</sub> & Z <sub>12</sub> for the circuit shown below.             | (3M)                 |
|              |                                                                                   |                      |



### PART – B (50 Marks)

11. For the circuit shown find current in R2 using loop current method.

(10M)





12 Find the value of R in the circuit shown such it receives maximum power; also find the value of maximum power. (10M)

- A series connected R=10 Ω, L=50 mH, C=0.1 μF circuit is supplied with a voltage source of 10 V<sub>rms</sub>, 100 Hz frequency. Find Z<sub>eq</sub>, Current , Phase angle, power factor, Average power, reactive power and voltage across each element. (10M)
- 14. Two coupled coils with L<sub>1</sub>=0.02H, L<sub>2</sub>=0.01H & K=0.5 are connected in parallel aiding & parallel opposing. Find the equivalent inductance in each way also draw their equivalent circuit connection with proper placement of dots in each case. (10M)
- A balanced star connected load of (8+j6) Ω per phase is connected to a 3-φ, 220V supply. Find the line current, power factor, real power, reactive power & apparent power. (10M)
- 16. In the circuit shown, the switch is moved to position b at t=0, determine the current i(t) also find  $i_c(0)$ . (10M)



17. Derive the equivalent two port equation for interconnection of two 2-ports connected in parallel. (10M)

\*\*\*\*\*\*

B.E 2/4 (ECE) I – Semester (Backlog) Examination, December, 2017 Subject : Electromagnetic Theory

Time : 3 Hours

Max Marks : 75

### Note: Answer all questions from Part – A & Any five questions from Part – B. Part - A (25 Marks)

| 1.             | A closed surface is defined in spherical coordinates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\langle \mathbf{O} \rangle$ |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                | 3 < r < 5, 0.1f < 0.3f, 1.2f < 0.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (2)                          |
| 2.             | State and briefly discuss the basic definition of the curl of a vector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2)                          |
| 3.             | Point charges 1m C and -2mC are located at (3, 2, -1) and (-1, -1,4) respectively Calculate the electric force on a 10nC charge located at (0,3,1) and the electric field Intensity at that point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3)                          |
| 4.             | State Gauss's law Under what conditions is Gauss's law especially useful in determining the electric field intensity of a charge distribution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3)                          |
| 5.             | What is the basis for Magnetic Scalar Potential?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2)                          |
| 6.             | State stoke's theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2)                          |
| 7.             | List out the generalized forms of Maxwell's Equations in Integral form for The Time Varying fields.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ;<br>(4)                     |
| 8.             | The Electric field of a plane electromagnetic wave travelling in a nonmagnetic, non-<br>conducting medium is given by $E = 5 \cos (10^9 t+30z)a_x$ . What is the dielectric constant of<br>the medium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2)                          |
| ~              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · /                        |
| 9.             | What is loss tangent? Discuss its significance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2)                          |
| 9.<br>10       | What is loss tangent? Discuss its significance<br>A Uniform Plane Wave incident normally on a plane surface of a Dielectric material is<br>reflected with a VSWR of 3. Calculate the percentage of incident power that is reflected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2)<br>(3)                   |
| 9.<br>10       | What is loss tangent? Discuss its significance<br>A Uniform Plane Wave incident normally on a plane surface of a Dielectric material is<br>reflected with a VSWR of 3. Calculate the percentage of incident power that is reflected.<br>PART - B (50 Marks)                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2)<br>(3)                   |
| 9.<br>10<br>11 | <ul> <li>What is loss tangent? Discuss its significance</li> <li>A Uniform Plane Wave incident normally on a plane surface of a Dielectric material is reflected with a VSWR of 3. Calculate the percentage of incident power that is reflected.</li> <li>PART - B (50 Marks)</li> <li>a) Point charges Q<sub>1</sub> and Q<sub>2</sub> are respectively located at (4, 0,-3) and (2, 0, 1) if Q<sub>2</sub> = 4nc, Find Q<sub>1</sub> such that</li> </ul>                                                                                                                                                                                                                                             | (2)<br>(3)                   |
| 9.<br>10<br>11 | <ul> <li>What is loss tangent? Discuss its significance</li> <li>A Uniform Plane Wave incident normally on a plane surface of a Dielectric material is reflected with a VSWR of 3. Calculate the percentage of incident power that is reflected.</li> <li><b>PART - B (50 Marks)</b></li> <li>a) Point charges Q<sub>1</sub> and Q<sub>2</sub> are respectively located at (4, 0,-3) and (2, 0, 1) if Q<sub>2</sub> = 4nc, Find Q<sub>1</sub> such that</li> <li>i) The E at (5, 0, 6) has No Z - Component</li> <li>ii) The force on a Test charge at (5, 0, 6) has No X – Component</li> <li>b) Obtain a formula for the electric field intensity on the axis of a circular disk of radius</li> </ul> | (2)<br>(3)                   |

- 12 a) A Point charge 5nc is located at (-3, 4, 0) while line y =1, z=1 carries uniform charge 2nc,
  - i) If V=0V at O (0, 0, 0), Find V at A (5, 0, 1)
  - ii) If V = 100V at B (1, 2, 1) Find V at C (-2, 5, 3) (6) (4)
  - b) Derive the Expression for The Energy Density in Electrostatic Field

....2

Code No. 41

- 13 a) Find the magnetic field intensity at the center of a square loop, with side 'w' Carrying a direct current 'l'. (4)
  - b) Obtain the vector magnetic potential due to a long straight conducting wire carrying a current 'l' in + z direction (6)
- 14 a) Determine the capacitance per unit length between two long parallel, circular wires of radius 'a'. The axes of the wires are separated by a distance 'd'. (5)(5)
  - b) Derive the Equation of Continuity
- 15 a) From the Maxwell's curl's equation derive the wave equations for an Electromagnetic wave in conducting media (5)
  - b) In a medium E = 16 e<sup>-x/20</sup> sin  $(2x10^8 \text{ t-}2x)i_7 \text{ V/m}$ . Find the direction of propagation, the propagation constant, wavelength, speed of the wave and skin depth (5)
- 16 a) State and prove poynting Theorem.
  - b) Discuss the determination of the reflected and transmitted wave fields of a uniform plane wave incident normally onto a plane boundary between two material media. (5)
- 17 a) What is Lorentz's condition and show that time varying Electric scalar potential and magnetic vector potential satisfy wave equations if Lorentz's condition is assumed. (6)
  - b) Write Maxwell's equations in Differential and Integral form for Time varying Conditions. (4)

(5)

B.E. 2/4 (M/P/AE) I - Semester (Main) Examination, December 2017

# Subject : Mechanics of Materials

Time : 3 Hours

Max. Marks: 75

Note: Answer all questions from Part-A and answer any five questions from Part-B.

PART – A (25 Marks)

| 1  | Define Hardness and Stiffness.                                                 | (2) |
|----|--------------------------------------------------------------------------------|-----|
| 2  | Write demerits of Mohr's circle of stresses.                                   | (2) |
| 3  | Write the relation between shear force, BM and intensity of loading.           | (2) |
| 4  | Write small notes on flexural rigidity.                                        | (2) |
| 5  | Explain slope and deflection.                                                  | (2) |
| 6  | Difference between closely coiled and open coiled helical spring.              | (3) |
| 7  | Write the relation between longitudinal shear stress and lateral shear stress. | (3) |
| 8  | Write down importance of compound cylinders.                                   | (3) |
| 9  | Explain Kern of the section.                                                   | (3) |
| 10 | Find sectional modulus of a circular section of dia 400 mm.                    | (3) |

# PART – B (50 Marks)

11 Derive pure torsion equation

$$\frac{T}{J} = \frac{\overline{C}}{r} = \frac{C_{"}}{\ell}$$

12 Draw SFD and BMD



- 13 A simply supported beam of span 16M carries a point of 10kN at a distance of 4M form left support. Find max deflection of the beam in terms of EI by using fundamentals of Macaulay's method.
- 14 A T-section beam with 100 mm x 10 mm flange and 150mm x 15 mm web is simply supported and subjected to a UDL of 10 kN/M over its entire span 8M. Draw the variation of shear stress across the depth of the beam at the supports and obtained man shear stress at the section.

- 15 A hollow alloy tube 5M long with external and internal diameter 30 mm and 25 mm was found to extend by 4.3 mm, under a tensile load of 40 kN. Find the critical load for the tube when used as a column with one end fixed and other end free. Also find the safe load for the tube with a factor of safety of 4.
- 16 (a) Sketch the stress and strain curve for Brittle material. Explain all the salient points on it.
  - (b) In a tension best on a circular rod 60 mm diameter and 200 mm gauge Length. The elongation recorded was 0.6mm. The decrease in diameter was found to be 0.22mm. Calculate the three elastic Constants.
- 17 Write short notes on the following:
  - (a) Direct and bending stress
  - (b) Theory of pure bonding
  - (c) Second and Perry's formula

|                                                 |                                                             | FART = A (25  Marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |
|-------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | De<br>Wh<br>Wr<br>De<br>Wh<br>De<br>Dif<br>Kh<br>for<br>Lis | fine ADT. Give example.<br>nen do use sparse matrix? Give benefits.<br>nat is a amazing problem? Which Data Structure is used?<br>ite about sub-typing. Give example.<br>fine equivalence class.<br>ny do we need circular lists?<br>scribe static hashing.<br>ferentiate between a binary tree and threaded binary tree.<br>nen do you prefer internal sorting and what are the metrics taken into consideration<br>fast sorting?<br>t various graph traversal techniques. | 2<br>3<br>2<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2 |
|                                                 |                                                             | PART - B (50 Marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| 11                                              | a)<br>b)                                                    | Write about performance analysis and measurement.<br>Derive the time complexity for quick sort worst case and best case.                                                                                                                                                                                                                                                                                                                                                    | 4<br>6                                                             |
| 12                                              | De                                                          | fine template, using template implement stack data structure.                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                 |
| 13                                              | a)<br>b)                                                    | Write insert and delete operations in DLL (Double Linked Lists) using C++ code.<br>Compare single linked list and chain.                                                                                                                                                                                                                                                                                                                                                    | 6<br>4                                                             |
| 14                                              | a)                                                          | Construct AVL tree using following:                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                  |
|                                                 | b)                                                          | 3 2 15 10 28 18 4 14 30 9 21 26<br>Write the properties of B-Tree. How insertion and deletion are done.                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                  |
| 15                                              | a)<br>b)                                                    | How does heap sort work give its time complexity for best and worst cases.<br>Differentiate DFS and BFS.                                                                                                                                                                                                                                                                                                                                                                    | 5<br>5                                                             |
| 16                                              | a)<br>b)                                                    | How does sorting on several keys work.<br>How do copy binary tree show it using example code.                                                                                                                                                                                                                                                                                                                                                                               | 4<br>6                                                             |
|                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |

Note: Answer all questions from Part A and any five questions from Part B.

### DART - A (25 Marke)

Subject: Data Structures Using C++

FACULTY OF ENGINEERING B.E. 2/4 (CSE) I – Semester (Backlog)) Examination, December 2017

### Code No. 51

Max.Marks: 75

10

17 Differentiate Prim's and Kruskal's algorithms with example.

\*\*\*\*

# Time: 3 Hours

# FACULTY OF INFORMATICS B.E. 2/4 (IT) I-Semester (Backlog) Examination, December 2017

### Subject : Micro Electronics

Time : 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A and any FIVE questions from Part-B.

# PART – A (25 Marks)

| 1   | Draw the circuit symbols of PN junction diode, Zener diode and LED.                | 2  |
|-----|------------------------------------------------------------------------------------|----|
| 2   | Briefly explain the principle of operation of a Varactor diode.                    | 3  |
| 3   | Differentiate between BJT and FET.                                                 | 3  |
| 4   | What are different modes of operation of BJT?                                      | 2  |
| 5   | Derive the expression for voltage gain of a negative feedback amplifier.           | 3  |
| 6   | List the four basic feedback topologies.                                           | 2  |
| 7   | List the ideal characteristics of an operational amplifier.                        | 3  |
| 8   | Draw the circuit for comparator using Op-amp.                                      | 2  |
| 9   | What is noise margin?                                                              | 2  |
| 10  | what are PUN and PDN?                                                              | 3  |
|     | <b>PART – B</b> (50 Marks)                                                         |    |
|     | I ART - D (SO Marks)                                                               |    |
| 11  | a) Explain the operation of a full wave bridge rectifier.                          | 6  |
| • • | b) Explain the operation of Zener diode in reverse bias condition.                 | 4  |
|     |                                                                                    |    |
| 12  | Explain the input and output characteristics of BJT in CB and CE configuration and |    |
|     | compare them.                                                                      | 10 |
|     |                                                                                    |    |
| 13  | a) Discuss the properties of negative feedback in amplifiers.                      | 6  |
|     | b) Explain the operation of Hartley oscillator.                                    | 4  |
| 11  | Evaluin the function of On amp on                                                  |    |
| 14  | a) Addar b) Integrator                                                             | 10 |
|     | a) Adden b) Integrator                                                             | 10 |
| 15  | Implement the following using CMOS logic and explain.                              | 10 |
|     | a) 2 input AND gate b) 2-input OR gate c) 2-input XOR gate                         |    |
|     |                                                                                    |    |
| 16  | a) Explain the use of PN diode in the limiting circuit.                            | 5  |
|     | b) Explain the working of MOSFET.                                                  | 5  |
|     |                                                                                    |    |
| 17  | Write short notes on the following:                                                | 10 |
|     | a) Class-B power amplifier                                                         |    |
|     | b) CMOS inverter                                                                   |    |
|     | * * * * *                                                                          |    |