FACULTY OF ENGINEERING

B.E I - Year (Backlog) Examination, December, 2017 Subject : Engineering Physics

Time : 3 Hours

Max Marks: 75
Note: Answer all questions from Part - A \& Any five questions from Part - B.

1. In a Newton's rings experiment the diameter of $10^{\text {th }}$ ring changes from 1.40 to 1.27 cm when a drop of liquid is introduced between the lens and the glass plate. Calculate the refractive index of the liquid.
2. Distinguish between Fresnel and Fraunhofer diffraction
3. Mention few applications of optical fibres
4. Derive Rayleigh Jeans Law and Wien's Law from Planck's Law
5. What are Miller indices and explain with good example
6. Discuss merits and demerits of classical free electron theroy
7. Write a note on frequency and temperature dependence of dielectric polarization
8. Calculate the critical current for a wire of lead having a diameter of 1 mm at 4.2 K . Critical temperature for lead is 7.18 K and critical field at 0 K is $6.5 \times 10^{4} \mathrm{~A} / \mathrm{m}$
9. What are bulk and thin films?
10. Write some properties of Nano - materials

PART - B

11.a) Describe the construction of Nicol's prism and explain how it can be used as
polarizer.
b) Discuss how hologram is recorded and how image is constructed from it

12 a) What are fermions and obtain the Fermi - Dirac distribution function for fermions
b) Explain the working principle of an optical fiber
13. a) Define the term Packing Fraction and find its value for SCC, BCC, FCC
b) Explain qualitatively Kronig Penny Model with discuss its conclusions

14 a) What are different types of polarizations and derive an expression for ionic
polarizability

b) Distinguish between soft and hard magnetic materials

15 a) Explain sol-gel technique in preparing thin film
b) What are carbon Nano tubes and mention few applications
16. a) Discuss Fraunhofer's diffraction at a single slit and explain intensity distribution
b) Apply the schroedinger's wave equation to a particle in an infinite square well potential and calculate its eigen values
17. a) Distinguish between Type - 1 and Type - 2 superconductors
b) State and explain Hall Effect

FACULTY OF ENGINEERING AND TECHNOLOGY

B.E/ B. Tech (Bridge Course) II-Semester Backlog Examination, December 2017 Subject: Mathematics

Max. Marks: 75
Time: 3 Hours
Note: Answer all questions of Part-A, \& Answer any FIVE questions from Part-B.

PART-A

1. A coin is tossed thrice. Find the sample space
2. Define discrete random variable
3. Find the value of C of Rolle's Theorem for $f(x)=x^{2}$ in $[-1,1]$.
4. Obtain the curvature of the curve $y^{2}=x$ at $(1,1)$.
5. Evaluate $\int x e^{x} d x$
6. Find the area of the circle $(x-1)^{2}+y^{2}=4$
7. If $\vec{F}=x y \hat{i}+y \hat{j}+\mathrm{zx} \hat{\mathrm{k}}$, find $\nabla \cdot \vec{F}$
8. State Gauss's divergence theorem.
9. Define Beta and Gamma functions
10. Show that $\operatorname{erf}(x)+\operatorname{erfc}(x)=1$

PART-B

11. (a) Find the median wage of the following distribution:

Wages (in Rs.)	$2000-3000$	$3000-4000$	$4000-5000$	$5000-6000$	$6000-7000$
No. of Workers	3	5	20	10	5

(b) If $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{5}$, thenfind $(\mathrm{i}) \mathrm{P}(\mathrm{A} \cap \mathrm{B})(\mathrm{iii}) \mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\mathrm{c}}\right) \operatorname{and}(\mathrm{iii}) \mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \cap B^{c}\right)$
12. (a) State and prove Cauchy's mean value theorem
(b) Find the Taylor series expansion of $\mathrm{f}(\mathrm{x})=\operatorname{cosx}$ about $x=\frac{\pi}{4}$
13. (a) Evaluate $\iint_{R} e^{2 x+3 y} d x d y$ over the triangle bounded by $\mathrm{x}=0, \mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$
(b) Evaluate $\int_{0}^{\ln c} \int_{0}^{\ln b} \int_{0}^{\ln a} e^{x+y+z} d x d y d z$
14. (a) Find the directional derivative of the scalar function
$f(x, y, x)=x y+y z+z x$ at $(1,2,0)$ in thedirectionof the vectori $+2 \hat{j}+2 \hat{\mathrm{k}}$.
(b) If \vec{a} is a constant vector and $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, prove that $\operatorname{div}(\vec{a} \times \overrightarrow{\mathrm{r}})=0$
15. (a) Prove that $\beta(m, n)=\frac{\Gamma m \Gamma \mathrm{n}}{\Gamma(m+n)}$
(b) Evaluate $\int_{0}^{1}\left(\ln \frac{1}{x}\right)^{n-1} d x, n>0$
16. (a) State and prove multiplication theorem of probability
(b) Find the envelope of the family $(x-c)^{2}+(y-c)^{2}=c^{2}, c$ is parameter
17. Verify Green's theorem for $\oint_{C} e^{-x} \sin y d x+e^{-x} \cos y d y$, where C is the rectangle with vertices at $(0,0),(\pi, 0),\left(\pi, \frac{\pi}{2}\right),\left(0, \frac{\pi}{2}\right)$.

FACULTY OF ENGINEERING

B.E. I-Semester (Main \& Backlog) Examination, Dec, 2017
 Subject: Engineering Mathematics-I

Time: 3 hours
Max. Marks: 70
Note: Answer all questions from Part-A and any Five Questions from part-B PART - A (20 Marks)

1. Find the value of λ such that the rank of the matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 4 & 2 \\
2 & 6 & \lambda
\end{array}\right] \text { is } 2 .
$$

2. Find the sum and product of the eigen values of

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 3 & -1 \\
0 & -1 & 3
\end{array}\right] .
$$

3. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{4 n^{3}+2}{7 n^{3}+2 n}$.
4. Define the terms i) Absolute convergence and ii) Conditional convergence of a series with arbitrary terms.
5. Find the radius of curvature of the curve $y=x^{2}-3 x+5$ at $(1,3)$.
6. Find the envelope of the family of straight lines $y=m x+\frac{a}{m}$ where ' m ' is the parameter and 'a' is a constant.
7. If $z=y+f(u), u=\frac{x}{y}$ then show that $u \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=1$.
8. If $u=x^{2}+y^{2}, v=2 x y$, find $\frac{\partial(u, v)}{\partial(x, y)}$.
9. Show that $\vec{V}=12 x \hat{i}-15 y^{2} \hat{j}+\hat{k}$ is irrotational.
10. Find ∇f at $(1,2,-1)$ if $f(x, y, z)=\log _{e}(x+y+z)$.

PART - B (50 Marks)

11. a) Test for consistency and solve if consistent

$$
x+2 y+z=3 ; \quad 2 x+3 y+2 z=5 ; \quad 3 x-5 y+5 z=2 ; \quad 3 x+9 y-z=4
$$

b) Find the eigen values and eigen vectors of the matrix.

$$
\left[\begin{array}{ccc}
2 & 1 & -1 \tag{5}\\
1 & 1 & -2 \\
-1 & -2 & 1
\end{array}\right]
$$

12. a) Test the convergence of the series.

$$
\begin{equation*}
\frac{\mathrm{x}}{1.2}+\frac{\mathrm{x}^{2}}{2.3}+\frac{\mathrm{x}^{3}}{3.4}+\frac{\mathrm{x}^{4}}{4.5}+\cdots \cdots \cdots \cdots \text { to } \infty \tag{5}
\end{equation*}
$$

b) Test the following series for conditional convergence.

$$
\begin{equation*}
\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}-1} \frac{\mathrm{n}}{\mathrm{n}^{2}+1} \tag{5}
\end{equation*}
$$

13. a) Verify Lagrange's Mean Value Theorem for $f(x)=x(x-1)(x-2), x \in[0,1 / 2]$.
b) Find the evolute of the parabola $x^{2}=4 a y$.
14. a) Expand $f(x, y)=\tan ^{-1}(x y)$ as a Taylor series about $(1,1)$ upto terms of second degree.
b) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $(0,0)$ given

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y}{x^{2}+2 y^{2}}, & (x, y) \neq(0,0) \tag{5}\\
0 & ,(x, y)=(0,0)
\end{array}\right.
$$

15. a) Find the directional derivative of $\phi=x y^{2}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the normal to the surface $x \log _{e} z-y^{2}=-4$ at $(-1,2,1)$.
b) If $\vec{F}=\left(5 x y-6 x^{2}\right) \hat{i}+(2 y-4 x) \hat{j}$, evaluate $\int_{C} \vec{F} \cdot \overrightarrow{d R}$ along the curve C in the $x y$-plane given by $y=x^{3}$, from the point $(1,1)$ to $(2,8)$.
16. a) Using Cayley-Hamilton theorem find A^{-1}

$$
\text { if } A=\left[\begin{array}{ccc}
1 & 1 & 2 \tag{5}\\
0 & -2 & 0 \\
0 & 0 & 3
\end{array}\right] \text {. }
$$

b) Test the convergence of the series $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n} x^{n},(x>0)$.
17. a) Find the maxima and minima of $f(x, y)=x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}$.
b) Prove that $\nabla \cdot(\nabla \times \vec{A})=0$, Where \vec{A} is a vector point function.

