Code No. 4

FACULTY OF ENGINEERING

B.E I – Year (Backlog) Examination, December, 2017 Subject : Engineering Physics

Time : 3 Hours

Max Marks : 75

[2]

[3]

[3]

[3]

[2]

[2]

Note: Answer all questions from Part – A & Any five questions from Part – B.

Part – A (25 MARKS)

- In a Newton's rings experiment the diameter of 10th ring changes from 1.40 to 1.27 cm when a drop of liquid is introduced between the lens and the glass plate. Calculate the refractive index of the liquid.
 Distinguish between Fresnel and Fraunhofer diffraction
- 3. Mention few applications of optical fibres
- 4. Derive Rayleigh Jeans Law and Wien's Law from Planck's Law
- 5. What are Miller indices and explain with good example
- 6. Discuss merits and demerits of classical free electron theroy
- 7. Write a note on frequency and temperature dependence of dielectric polarization [3]
- 8. Calculate the critical current for a wire of lead having a diameter of 1mm at 4.2K. Critical temperature for lead is 7.18K and critical field at 0K is 6.5×10^4 A/m [2]
- 9. What are bulk and thin films?
- 10. Write some properties of Nano materials

PART – B

11.a) b)	Describe the construction of Nicol's prism and explain how it can be used as polarizer. Discuss how hologram is recorded and how image is constructed from it	[5] [5]
12 a) b)	What are fermions and obtain the Fermi – Dirac distribution function for fermions Explain the working principle of an optical fiber	[5] [5]
13.a) b)	Define the term Packing Fraction and find its value for SCC, BCC, FCC Explain qualitatively Kronig Penny Model with discuss its conclusions	[4] [6]
14 a) b)	What are different types of polarizations and derive an expression for ionic polarizability Distinguish between soft and hard magnetic materials	[5] [5]
15 a) b)	Explain sol-gel technique in preparing thin film What are carbon Nano tubes and mention few applications	[5]
16. a)) Discuss Fraunhofer's diffraction at a single slit and explain intensity distribution	[5]
Ŭ	potential and calculate its eigen values	[5]
17. a) b)	 Distinguish between Type - 1 and Type - 2 superconductors State and explain Hall Effect 	[5] [5]

FACULTY OF ENGINEERING AND TECHNOLOGY

B.E/ B. Tech (Bridge Course) II-Semester Backlog Examination, December 2017

Subject: Mathematics

Time: 3 Hours

Max. Marks: 75

Note: Answer all questions of Part-A, & Answer any FIVE questions from Part-B.

PART-A

1.	A coin is tossed thrice. Find the sample space	[3]	
2.	Define discrete random variable	[2]	
3.	Find the value of C of Rolle's Theorem for $f(x) = x^2$ in [-1, 1].	[3]	
4.	Obtain the curvature of the curve $y^2 = x$ at (1, 1).	[2]	
5.	Evaluate $\int x e^x dx$	[3]	
6.	Find the area of the circle $(x-1)^2+y^2=4$	[2]	
7.	If $\vec{F} = xy\hat{i} + yz\hat{j} + zx\hat{k}$, find $\nabla \cdot \vec{F}$	[3]	
8.	State Gauss's divergence theorem.	[3]	
9.	Define Beta and Gamma functions	[3]	
10	.Show that erf(x)+erfc(x)=1	[2]	
PART-B			
11	. (a) Find the median wage of the following distribution:	[5]	

Wages (in Rs.)	2000-3000	3000-4000	4000-5000	5000-6000	6000-7000
No. of Workers	3	5	20	10	5

(b) If
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{1}{3}$, $P(A \cap B) = \frac{1}{5}$, then find(i) $P(A \cap B)$ (iii) $P(A \cap B^{c})$ and(iii) $P(A^{c} \cap B^{c})$ [5]

- 12. (a) State and prove Cauchy's mean value theorem [5]
 - (b) Find the Taylor series expansion of $f(x) = \cos x$ about $x = \frac{f}{4}$ [5]
- 13. (a) Evaluate $\iint_{R} e^{2x+3y} dx dy$ over the triangle bounded by x=0, y=0 and x+y=1 [5] $\ln c \ln b \ln a$

(b) Evaluate
$$\int_{0}^{mc} \int_{0}^{md} \int_{0}^{md} e^{x+y+z} dx dy dz$$
 [5]

- 14. (a) Find the directional derivative of the scalar function
 - f(x, y, x) = xy + yz + zx at (1,2,0)in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$. [5]
 - (b) If \vec{a} is a constant vector and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, prove that div $(\vec{a} \ge \vec{r}) = 0$ [5]

15. (a) Prove that
$$s(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m-1)}$$
 [5]

$$\Gamma(m+n) = \Gamma(m+n)$$

..2

--2--

(b) Evaluate
$$\int_{0}^{1} (\ln \frac{1}{x})^{n-1} dx, n > 0$$
 [5]

- 16. (a) State and prove multiplication theorem of probability
 - (b) Find the envelope of the family $(x-c)^{2}+(y-c)^{2}=c^{2}$, c is parameter [5]
- 17. Verify Green's theorem for $\oint_C e^{-x} \sin y \, dx + e^{-x} \cos y \, dy$, where C is the rectangle with

vertices at (0,0), $(f,0), (f,\frac{f}{2}), (0,\frac{f}{2})$.

[10]

[5]

Code No. 9

FACULTY OF ENGINEERING

B.E. I-Semester (Main & Backlog) Examination, Dec, 2017 Subject: Engineering Mathematics-I

Time: 3 hours

 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

2 6 }

1 4 2 is 2.

Max. Marks: 70

[2]

[2]

Note: Answer all questions from Part-A and any Five Questions from part-B

PART – A (20 Marks)

1. Find the value of λ such that the rank of the matrix

2. Find the sum and product of the eigen values of

	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}.$					
3.	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{4n^3 + 2}{7n^3 + 2n}$.	[2]				
4.	Define the terms i) Absolute convergence and ii) Conditional convergence of a series with arbitrary terms.	[2]				
5.	Find the radius of curvature of the curve $y = x^2-3x+5$ at (1, 3).	[2]				
6.	Find the envelope of the family of straight lines $y = mx + \frac{a}{m}$ where 'm' is the					
	parameter and 'a' is a constant.	[2]				
7.	If $z=y+f(u)$, $u = \frac{x}{y}$ then show that $u \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$.	[2]				
8.	If $u=x^2+y^2$, $v=2xy$, find $\frac{\partial(u, \in)}{\partial(x, y)}$.	[2]				
9.	Show that $\vec{V} = 12x\hat{i} - 15y^2\hat{j} + \hat{k}$ is irrotational.	[2]				
10	. Find ∇f at (1, 2, -1) if f(x, y, z) = log _e (x+y+z).	[2]				
	PART – B (50 Marks)					
11.	. a) Test for consistency and solve if consistent					

x+2y+z=3; 2x+3y+2z=5; 3x-5y+5z=2; 3x+9y-z=4.

b) Find the eigen values and eigen vectors of the matrix.

$$\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}.$$
 [5]

12. a) Test the convergence of the series.

$$\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \frac{x^4}{4.5} + \dots \text{ to } \infty$$
[5]

b) Test the following series for conditional convergence.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2 + 1}$$
[5]

- 13. a) Verify Lagrange's Mean Value Theorem for f(x)=x (x-1) (x-2), x∈[0, 1/2]. [5]
 b) Find the evolute of the parabola x²=4ay. [5]
- 14. a) Expand f(x, y)=tan⁻¹(xy) as a Taylor series about (1,1) upto terms of second degree. [5]

b) Find
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ at (0,0) given

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + 2y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
[5]

15. a) Find the directional derivative of $w = xy^2 + yz^3$ at the point (2,-1,1) in the direction of the normal to the surface $x \log_e z - y^2 = -4$ at (-1,2,1). [5]

b) If
$$\vec{F} = (5xy - 6x^2)\hat{i} + (2y - 4x)\hat{j}$$
, evaluate $\int_{C} \vec{F} \cdot d\hat{R}$ along the curve C

in the xy-plane given by $y=x^3$, from the point (1,1) to (2,8). [5]

16. a) Using Cayley- Hamilton theorem find A⁻¹

if

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \,.$$
[5]

b) Test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n x^n, (x > 0).$ [5]

17. a) Find the maxima and minima of $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. [5]

b) Prove that
$$\nabla \cdot \left(\nabla \times \vec{A} \right) = 0$$
, Where \vec{A} is a vector point function. [5]