Time: 3 Hours \\ \title{
FACULTY OF ENGINEERING \\ \title{
FACULTY OF ENGINEERING \\ \\ B.E. I - Year (Backlog) Examination, December 2017 \\ \\ B.E. I - Year (Backlog) Examination, December 2017 \\ Subject: Engineering Mechanics \\ Subject: Engine
}

Note: Answer all questions from Part A and any five questions from Part B.
PART - A (25 Marks)
1 Write the static equilibrium equations for co-planar force system.
2 Explain the term 'Free Body Diagram' with an example.
3 The component of a force $3 i+5 k$ along a line $4 j+3 k$ is: \qquad
4 Define the terms angle of friction and cone of friction.
5 Write whether the following statement are true or false.
Max.Marks: 75
a) The reactions at supports of a beam will be considered as internal forces for drawing its free body diagram.
b) The frictional resistances in rolling are lesser than static friction.
c) Parallel axes theorem is $\mathrm{I}_{\mathrm{cg}}=\mathrm{I}_{\mathrm{xx}}+$ Ah with usual notation.

6 The centroid of a triangular section of base ' b ' and height ' h ' from its base is \qquad .
7 The motion of a particle is given by the equations, $x=t^{3}-15 t^{2}-20$, where x is displacement in meters and t is in sec. determine the acceleration of particle after 4 sec .

8 Explain briefly with an example, about general plane motion.
9 Determine the work done in pulling a block of wood weighing 100 kN for a length of 10 m up on a smooth inclined plane which makes 30° with the horizontal.

10 Define the coefficient of restitution.

$$
\text { PART - B (5x10 = } 50 \text { Marks })
$$

11 a) In Fig. 1. a force P passing through C produces a clockwise moment of $600 \mathrm{~N}-\mathrm{Cm}$ about ' A ' and a counterclockwise moment of $300 \mathrm{~N}-\mathrm{Cm}$ about ' B '. Determine the moment of P about ' O '.
Fig. 1.

b) Find the resultant for concurrent co-planar force system shown in Fig. 2.

Fig. 2.

12 For the system shown in Fig. 3, the force multiplier of P acting from A to E is $\mathrm{Pm}=100 \mathrm{~N} / \mathrm{m}$. Determine the following.
a) Component of force P along AC .
b) Moment of P about C .

13 A 100 N cylinder shown in Fog. 4 is held at rest by a weight ' P ' suspended from chord wrapped around the cylinder if the slipping impends between the cylinder and the inclined, determine the value of ' P ' and also the co-efficient of friction.

14 a) Find the coordinates of centroid of a quarter ellipse shown in Fig. 5, Using direct integration.

Fig. 5

b) Determine the centre of gravity of a solid hemisphere of radius ' R ', from its base circle.

15 a) Derive from first principles the moment of inertia of a right angled triangle about the base.
b) Calculate the moment of inertia of T-section shown in Fig. 6, below, about centroidal X -axis.

16 a) State D'Alembert principle.
b) The location of a particle defined as $r=5+7 \mathrm{t}^{2}$ and $\theta=6+3 \mathrm{t}^{2}$. Determine the magnitude of velocity and the accelerations of the particle at $\mathrm{t}=4 \mathrm{sec}$.

17 a) Derive Work Energy Equation for translation.
b) The system has a rightward velocity of $10 \mathrm{~m} / \mathrm{s}$. Determine the constant value of P that give it a leftward velocity of $20 \mathrm{~m} / \mathrm{s}$ in a time interval of 20 sec . Take weights of connected blocks weights of $200 \mathrm{~N}, 100 \mathrm{~N}$ and 400 N from left to right as shown in Fig. 7.

FACULTY OF ENGINEERING

B.E. I - Semester (Main \& Backlog) Examination, December 2017

Time: 3 Hours
Subject: Engineering Mechanics - I

Note: Answer all questions from Part A and any five questions from Part B.

$$
\text { PART - A (10x2 = } 20 \text { Marks) }
$$

1 What are the characteristic of a force?
2 Find the component of force $F=4 i+5 k$ along a line $3 i-4 j$.
3 Define free body diagram. Illustrate with an example.
4 State the Varignon's theorem.
5 Differentiate centroid and centre of gravity.
6 What are the assumption made in finding out the force in the member of truss?
7 Define:
i) Coefficient of friction
ii) Angle of friction

8 Define radius of gyration.
9 State laws of friction.
10 What are the uses of Pappus theorem?

$$
\text { PART - B (5x10 = } 50 \text { Marks) }
$$

$11 A$ bar of $4 m$ length and of negligible weight is resting on smooth planes at A and B and subjected to loads as shown in Fig. 1. Determine the angle θ for equilibrium.

12 A vertical load of 1100 N is supported by the three bars as shown in Fig. 2. Find the force in each bar. Points C, O, D are in XZ plane while B is 5 m above this plane.

Fig. 2

13 Determine the forces in the truss shown in Fig. 3 which carries horizontal load of 12 kN and a vertical load of 18 kN .

14 Determine the force ' P ' required to start the wedge shown in Fig. 4. The angle of friction with all surfaces at contact is 15°.

15 Find the centroid of shaded area as shown in Fig. 5.

16 a) Derive from first principle the moment of inertia of a right angled triangle about base.
b) Find the moment of inertia of the shaded area as shown in Fig. 6 about centroidal yo axis.

Fo. 6

17 a) Explain briefly product of inertia with an example.
b) State and prove 'parallel axis theorem'.
c) A rope make $1 \frac{1}{4}$ turns around a drum is used to support a heavy weight. If coefficient of friction is 0.4 . What weight can be supported by exerting a 50 N force at other end of rope?

