FACULTY OF ENGINEERING

B.E. II - Semester(Main \& Backlog) Examination, May / June 2018

Subject : Engineering Mathematics-II

Time : 3 Hours
Max. Marks: 75
Note: Answer all questions from Part-A \& any five questions from Part-B.
PART - A (25 Marks)

1. Find an integrating factor of $\left(x^{3}+y^{3}\right) d x-x^{2} y d y=0$.
2. Obtain the singular solution $y=x y^{\prime}-\frac{1}{y^{\prime}}$
3. Solve $\left(D^{3}-8\right) y=0$.
4. Determine whether the functions $e^{-x}, e^{x} . \operatorname{coshx}$ are linearly dependent for $x \in(0, \infty)$.
5. Classify the singular points of the differential equation
$x^{2} y^{\prime \prime}+(x \cos x) y^{\prime}+(\sin x) y=0$.
6. Prove that $P_{n}^{\prime}(-1)=(-1)^{n-1} \frac{n(n+1)}{2}$
7. Evaluate $\Gamma\left(\frac{-7}{2}\right)$.
8. If n is an integer, prove that $J_{-n}(x)$ and $J_{n}(x)$ are linearly dependent.
9. Find the Laplace transform $f(t)=t^{2}$ sinht.
10. Define Unit step function and Impulse function.

PART-‘B'(50 Marks)

11. a) Solve $\left(y e^{x y}+4 y^{3}\right) d x+\left(x e^{x y}+12 x y^{2}-2 y\right) d y=0, y(0)=2$.
b) Find the orthogonal trajectories of the family of circles which pass through $(0,0)$ and having centers on the y-axis.
12. a) Find the general solution of $y^{\prime \prime}-6 y^{\prime}+13 y=2 e^{3 x} \sin x \cos x$.
b) Solve $x^{3} y^{\prime \prime \prime}+6 x^{2} y^{\prime \prime}-12 y=\frac{12}{x^{2}}$.
13. Find the series solution of $2 x(1-x) y^{\prime \prime}+(1-x) y^{\prime}+3 y=0$ about $x=0$ by Frobenius method.
14. a) Evaluate $\int_{0}^{a} \frac{x^{3 / 2}}{\sqrt{a^{2}-x^{2}}} d x$ using Beta and Gamma functions.
b) Express $J_{2}^{\prime}(x)$ in terms of $J_{0}(x)$ and $J_{1}(x)$.
15. a) Find the inverse Laplace transform of $\frac{s}{s^{4}+s^{2}+1}$.
b) Apply Laplace transform to solve $y^{\prime \prime}+2 y^{\prime}-3 y=0, y(0)=0, y^{\prime}(0)=4$.
16. a) The number N of bacteria in a culture grew at a rate proportional to N . the value of N was initially 50 and increased to 150 in one hour. What would be the value of N after $1 \frac{1}{2} \mathrm{hrs}$. ?
b) Solve $y^{\prime \prime}+y=e^{-x}$ by the method of variation of parameters.
17. a) Prove that $\int_{-1}^{1} P_{n}^{2}(x) d x=\frac{2}{2 n+1}$ and hence evaluate $\int_{-1}^{1} \mathrm{P}_{10}^{2}(\mathrm{x})$.
b) Find $L\left[\int_{0}^{t} \frac{1-\mathrm{e}^{-\mathrm{u}}}{\mathrm{u}} \mathrm{du}\right]$
