FACULTY OF ENGINEERING

B.E. II - Semester(Main & Backlog) Examination, May / June 2018

Tir	Subject : Engineering Mathematics-II me : 3 Hours	Max. Marks: 75
	Note: Answer all questions from Part-A & any five questions fro	om Part-B.
PART – A (25 Marks)		
1.	Find an integrating factor of $(x^3 + y^3)dx - x^2ydy = 0$.	(2)
2.	Obtain the singular solution $y = xy' - \frac{1}{y'}$	(2)
3.	Solve (D ³ - 8)y=0.	(2)
4.	Determine whether the functions e^{-x} , e^x . coshx are linearly dependent $x \in (0, \infty)$.	for (2)
5.	Classify the singular points of the differential equation $x^2y'' + (xcosx)y' + (sinx)y = 0.$	(2)
6.	Prove that $P'_n(-1) = (-1)^{n-1} \frac{n(n+1)}{2}$	(2)
7.	Evaluate $\Gamma\left(\frac{-7}{2}\right)$.	(2)
8.	If n is an integer, prove that $J_{-n}(x)$ and $J_{n}(x)$ are linearly dependent.	(2)
9.	Find the Laplace transform $f(t) = t^2 \sinh t$.	(2)
10	. Define Unit step function and Impulse function.	(2)
11	PART-'B'(50 Marks)	(5)
11.	. a) Solve $(y e^{y} + 4y) dx + (xe^{y} + 12xy - 2y) dy = 0, y(0)=2.$	(5)
	 Find the orthogonal trajectories of the family of circles which pathrough (0,0) and having centers on the y-axis. 	ass (5)
12.	. a) Find the general solution of $y'' - 6y' + 13y = 2e^{3x} \sin x \cos x$.	(5)
	b) Solve $x^3y''+6x^2y'-12y=\frac{12}{x^2}$.	(5)
13.	Find the series solution of $2x(1 - x)y' + (1 - x)y' + 3y = 0$ about $x = 0$ Frobenius method.	0 by (10)
14.	. a) Evaluate $\int_{a}^{a} \frac{x^{\frac{3}{2}}}{\sqrt{a^2 - x^2}} dx$ using Beta and Gamma functions.	(5)
	b) Express $J'_2(x)$ in terms of $J_0(x)$ and $J_1(x)$.	(5)

- 15. a) Find the inverse Laplace transform of $\frac{s}{s^4 + s^2 + 1}$. (5)
 - b) Apply Laplace transform to solve y'' + 2y' 3y = 0, y(0) = 0, y'(0) = 4. (5)

..2

16. a) The number N of bacteria in a culture grew at a rate proportional to N. the value of N was initially 50 and increased to 150 in one hour. What would be the value of N after $1\frac{1}{2}$ hrs. ?

would be the value of N after
$$1\frac{1}{2}$$
 hrs. ? (5)

b) Solve
$$y''+y=e^{-x}$$
 by the method of variation of parameters. (5)

17. a) Prove that
$$\int_{-1}^{1} P_n^2(x) dx = \frac{2}{2n+1}$$
 and hence evaluate $\int_{-1}^{1} P_{10}^2(x)$. (5)

b) Find
$$L\left[\int_{0}^{t} \frac{1-e^{-u}}{u} du\right]$$

(5)