FACULTY OF ENGINEERING

BE II Semester (Main \& Backlog) Examination May/June 2018

Subject : Engineering Physics-II

Time : 3 Hours.
Max. Marks: 70
Note : Answer all questions from Part-A \& any five questions from Part-B.

PART-A (20 Marks)

1 Find the Miller indices of a set of parallel lines which make equal intercepts along the three Axes.
2 Write short note on crystal imperfections.
3 Write any four assumptions of free electron theory.
4 The intrinsic carrier density is $1.5 \times 10^{16} / \mathrm{m}^{-3}$ if the electron and hole motilities are 0.13 and $0.05 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ calculate the electrical conductivity.

5 What is Meissner effect in superconductors.
6 Mention the applications of Ferro electric material.
7 What is the significance of Hall effect.
8 Distinguish between a dielectric material and an insulator.
9 What are the advantages of thin films over bulk materials.
10 What is the surface to volume ratio at nano-scale.

PART-B (5x10=50 Marks)

11. a) Discuss the determination of lattice constants by powder diffraction method. 6
b) Distinguish between insulator, semiconductor and conductors based on the energy band diagram.
12. a) Explain the hysteresis curve of a ferro magnetic materials on the basis of
magnetic domains. 5

b) State the Joshepson effect. Explain the properties of superconducting
materials. 5
13. a)What is Hall effect? Obtain the expression for Hall coefficient. 5
b) Explain the crystal structure of the Barium Titanate. 5
14. a)Explain the principle and the technique of X-ray fluorescence. 5
b) Describe any one type of thermal evaporation technique with neat diagram. 5
15. a)Explain the synthesis of nano particles using Sol Gel method. 6
b) Write the applications of nano particles. 4
16. a)Explain the frequency and temperature dependence of dielectric polarization 6
b) What are the salient feature of kronig-Penny model? 4
17. a) Obtain an expression for the conductivity of an n-type semiconductor. 5
b) Explain construction and working of Scanning Electron Microscope(SEM). 5

