FACULTY OF ENGINEERING

B.E 2/4 I-Semester (Backlog) Examination, May/June 2018
 Subject : Mathematics - III (Common to All Except ECE/I.T)

Time: 3 Hours
Max. Marks : 75
Note: Answer all questions from Part-A and any five questions from Part-B.

Part - A (25 Marks)

1 Eliminate the arbitrary functions F and G to obtain a partial differential equation

$$
\begin{equation*}
\text { from } z=x y+F\left(x^{2}-y^{2}\right) \tag{3}
\end{equation*}
$$

2 Solve $p^{2}+q^{2}=6 z$
3 Find the half range sine series of the function
$f(x)=\left\{\begin{array}{l}0, \quad \pi \leq x<2 \pi\end{array}\right.$
4 Solve $\frac{\partial u}{\partial x}-2 \frac{\partial u}{\partial y}=u$ Where $u(x, 0)=6 \mathrm{e}^{-3 x}$
5 Two dice are thrown, at is the probability that the sum is neither 7 nor 11
6 Let X be a ranmdom variable with the following probability distribution

x	-3	6	9
$P(X=x)$	$1 / 6$	$1 / 2$	$1 / 3$

Then find $E(X), E(X+1)^{2}$
7 Six coins are tossed 2560 times. Find the probability of getting 6 heads 200 times using poission distribution
8 Find the moment generating function of gamma distribution
9 If the regression lines of Y on X and X on Y are $8 X-10 Y+66=0,40 X-18 Y-214=0$, then Find the correlation coefficient between X and Y
10 Fit a straight line $y=a+b x$ to the following data

x	0	2	4	5
y	3	11	19	23

Part - B ($\mathbf{5 0}$ Marks)

11.a) Find a complete integral of the equation $p^{2} x+q^{2} y=z$ by using charpit's method
b) Solve $\left(y^{3} x-2 x^{4}\right) p+\left(2 y^{4}-x^{3} y\right) q=q z\left(x^{3}-y^{3}\right)$
12. Find the Fourier series expansion of the function $f(x)=2 x-x^{2}$ in $(0,3)$ and hence deduce that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}} \ldots \ldots .=\frac{\pi^{2}}{12}$
13. Find the solution of the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=\mathrm{c}^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0<x<l, \mathrm{t}>0, \mathrm{u}(\mathrm{o}, \mathrm{t})=\mathrm{o}=4(1, \mathrm{t})$ $u(x, o)=\mathrm{u}_{0} \sin ^{3} \frac{\pi \mathrm{x}}{l} .,\left(\frac{\partial \mathrm{u}}{\partial \mathrm{t}}\right)_{t=0}=0$
14. a. State Baye's theorem

A bag A contains 3 red and 7 white balls A second bag B contains 5 red and 4 white balls. One ball is drawn at random from the first bag and transferred to the second bag. Now a ball is drawn from the second bag. It is found that the drawn ball is white. Find the probability that a red ball was transferred to bag B.
15. Let X be a variable which follows a normal distribution with mean 30 and standard deviation 5. Then find the probabilities that
(i) $26 \leq x \leq 40$
(ii) $X \geq 45$
(iii) $I X-30 I>5$
(Given $P(0 \leq z \leq 2)=0.4772 ; P(0 \leq z \leq 0.8)=0.2881$

$$
\begin{equation*}
P(0 \leq z \leq 1)=0.3413 ; P(0 \leq z \leq 3)=0.4986) \tag{10}
\end{equation*}
$$

16. A dice is thrown 276 times and the result of these throws are as follows

Face	1	2	3	4	5	6
Face frequency	40	32	29	59	57	59

Test whether the dice is biased or not $\left(x_{5}^{2}(0.05)=11.07\right)$
17. a). Fit a curve $y=a+b x+c x^{2}$ to the following data

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

b) The ranks of ten students in two subjects A and B are as follows

A	3	5	8	4	7	10	2	1	6	9
B	6	4	9	8	1	2	3	10	5	7

Then find the rank correlation coefficient

FACULTY OF INFORMATICS

B.E. 2/4 (IT) I-Semester (Back Log) Examination, May / June 2018
 Subject: Discrete Mathematics

Time: 3 Hours
Max. Marks: 75
Note: Answer all questions from Part A and any five questions from Part B.

PART-A (25 Marks)

1. State the converse, contrapositive and inverse of the implication: "If it snows today, Iwill
ski tomorrow".
2. Define functionally complete set of connectives.
3. What is the negation of the statement "All Americans eat cheese burgers"?
4. Let $f: A \rightarrow B, g: B \rightarrow C$; for the sets $A=\{a, b, c\}, B=\{x, y, z\}, C=\{1,2,3,4\}$ find gof and its image.
5. How many bit strings of length 8 either start with a 1 bit or end with the two bits 00.
6. If n is a positive integer then show that ${ }_{=0}(-1)^{r} n C_{r} \quad=0$.
7. How many different strings can be made by reordering the letters of the word SUCCESS?
8. From a group of 30 people, find the probability that atleast two people have the same birthday?
9. Define Euler Graph.
10. Explain Preorder, Inorder and Postorder tree traversals with an example.

PART-B (50 MARKS)
11. a) Without using the truth table, show that $\neg(p \vee(\neg p \wedge q))$ and $\neg \mathrm{p} \wedge \neg \mathrm{q}$ are logically equivalent.
b) Translate the statement $C(x) \cup \ni y(C(y) \cap F(x, y)))$ into english, where $\mathrm{C}(\mathrm{x})$ is " x has a computer" and $F(x, y)$ is " x and y are friends" and the universe of discourse for both x and y consists of all students in your school.
12. a) What is the Cartesian product $A X B X C$, where $A=\{0,1\}, B=\{1,2\}$, and

$$
\mathrm{C}=\{0,1,2\} ?
$$4

b) Use Mathematical Induction to prove that $n^{3}-n$ is divisible by 3 , whenever n is a positive integer.6
13. a) Find all solutions of the recurrence relation $a_{n}=3 a_{n-1}+2 n$. What is the solution with $\mathrm{a}_{1}=3$?
b) Are the events E, that a family with three children has children of both sexes, and F that a family with three children has at most one boy, independent? Assume that the eight ways a family can have three children are equally likely?
14. a) What is the variance of the random variable $X(i, j)=2 i$, where i is the number appearing on the first dice and j is the number appearing on the second dice, when two dice are rolled?
b) What is the coefficient of $x^{12} y^{13}$ in the expansion of $(x+y)^{25}$.
15. a) Suppose that R is the relation on the set of strings of english letters such that (a $R b$) if and only if $I(a)=l(b)$, where $I(x)$ is the length of the string x. Is R an equivalence relation?
b) Solve the recurrence relation $a_{n}=8 a_{n-1}+10^{n-1}$ and the initial condition $a_{1}=9$. Use Generating function to find an explicit formula for a_{n}.
16.a) Define Eulers formula. Suppose that a connected planar simple graph with 20 vertices, each of degree 3 . Into how many regions does a representation of this planar graph split the plane.
b) What is the prefix form for $((x+y) \uparrow 2)+((x-4) / 3)$?
17. a) Explain Kruskal's algorithm to find a minimum spanning tree with an example.
b) How many integers between 1 \& 1000 which are not divisible by 2,3 or 5 .

FACULTY OF ENGINEERING

B.E. II/IV(ECE) I Semester (Backlog) Examination, May/June 2018

Subject: Applied Mathematics

Time: 3 Hours
Max. Marks: 75
Note: Answer all questions from Part A \& Any Five questions from Part B PART - A (25 Marks)

1. Solve $2 p+3 q=1$
2. Reduce $4 x y z=p q+2 p q x^{2} y+2 q x y^{2}$ to clainaut's form using the transformation $x^{2}=X$ and $y^{2}=Y$
3. Determine whether the function $\mathrm{f}(\mathrm{z})=f(z)=\left\{\begin{array}{cc}\frac{z \cdot \operatorname{Re}(z)}{|z|} & z \neq 0 \\ 0 & 0\end{array}\right.$ Is continuous at $z=0$
4. Integrate $(\bar{z})^{2}$ from 0 to $2+i$ along the line $x=2 y$
5. Locate and classify the singular points of $\mathrm{f}(\mathrm{z})=\frac{1-e^{2 z}}{z^{4}}$
6. Find the bilinear transformation that maps the points $z=\infty, i, 0$ into the points $w=0, i, \infty$
7. Perform two iterations of bisection method to find the cube root of 100
8. If $y_{0}=1, y_{1}=11, y_{2}=28$ and $y_{3}=28$ and $y_{4}=29$, find $\Delta^{4} y_{0}$
9. Define coefficient of correlation and state its limits.
10. Show that the arithmetic mean of regression coefficients in greater than the correlation coefficient.

PART - B (50 Marks)

.11. (a) Form a partial differential equation by eliminating arbitrary constants a, b, c from $+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
(b)Solve $z^{2}\left(p^{2}+q^{2}\right)=x^{2}+y^{2}$
12. a) If $f(z)=u+i v$ is an analytic function and $u+v=(x+y)\left(2-4 x y+x^{2}+y^{2}\right)$, find u, v and the analytic function $f(z)$.
(b) State and prove Cauchy's integral formula.
13. (a)Find the Taylor's series expansion of $f(z)=\frac{:}{z} \quad$ about $z=0$
(b) Evaluate $\left.\quad\left(1+z+z^{2}\right)^{: / z}+e^{1 /(z-1)}+e^{1 /(z-2)}\right) \quad \mathrm{d} z$, where C is $|\mathrm{z}|=$, using residue theorem
14. (a) If $f(1)=168, f(7)=192$ and $f(15)=336$, find $f(10)$ using Lagrange's interpolation formula.
(b) Use the following data to find x for which y is minimum and find this value of y .

x	0.60	0.65	0.70	0.75
y	0.622	0.615	0.613	0.617

15. (a) Find the least square parabola to the following data:

x	-3	-1	1	3
y	15	5	1	5

(b) Calculate the correlation coefficient from the following data:

X	1	2	3	4	5	6	7	8	9
Y	9	8	10	12	11	13	14	16	15

16. (a) Solve $p q=z$ by charpit's method.
(b) If $f(z)=u+i v$ is analytic functions, show that $\nabla^{2} u^{2}=2\left|f^{\prime}(z)\right|^{2}$, where

$$
\nabla^{2}=+\frac{\partial^{2}}{\partial y^{z}}
$$

17. (a) Evaluate $\int_{0}^{\pi} \frac{d v}{\cos \theta)^{2}}$
(b) If $=x-y^{2}$, then find $y(0)$ using Ruge-Kuffa method of order 4.
