(3)

(2)

(2)

FACULTY OF ENGINEERING

B.E 2/4 I-Semester (Backlog) Examination, May/June 2018

Subject : Mathematics – III (Common to All Except ECE/I.T)

Time: 3 Hours

Max. Marks: 75

Note: Answer all guestions from Part-A and any five guestions from Part-B.

Part – A (25 Marks)

- 1 Eliminate the arbitrary functions F and G to obtain a partial differential equation from $z = x y + F(x^2 - y^2)$
- 2 Solve $p^2 + q^2 = 6z$ (2) 3 Find the half range sine series of the function $\int \pi - x, \quad 0 < x < \pi$ O. $\pi x < 2\pi$ f(x) =(3)

4 Solve
$$\frac{\partial u}{\partial x} - 2\frac{\partial u}{\partial y} = u$$
 Where u (x,0)=6e^{-3x}

- 5 Two dice are thrown, at is the probability that the sum is neither 7 nor 11 (3)
- 6 Let X be a ranmdom variable with the following probability distribution

Then find E (X), E (X + 1)²

- 7 Six coins are tossed 2560 times. Find the probability of getting 6 heads 200 times using poission distribution (3)
- 8 Find the moment generating function of gamma distribution
- 9 If the regression lines of Y on X and X on Y are 8X 10Y + 66 = 0, $40 \times 18 \times 1214 = 0$, then Find the correlation coefficient between X and Y (3)(2)
- 10 Fit a straight line y = a + bx to the following data

Х	0	2	4	5
у	3	11	19	23

Part – B (50 Marks)

11.a) Find a complete integral of the equation $p^2 x + q^2 y = z$ by using charpit's method (5) b) Solve $(y^3x - 2x^4) p + (2y^4 - x^3 y) q = q z (x^3 - y^3)$ (5)

12. Find the Fourier series expansion of the function f (x) = $2x - x^2$ in (0,3) and hence

deduce that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} \dots = \frac{f^2}{12}$ (10)

Contd.... 2....

(10)

(5)

(5)

13. Find the solution of the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$, 0 < x < l, t > 0, u(o, t) = o = 4 (l, t)

$$u(x,o) = u_0 \sin^3 \frac{fx}{l} ... \left(\frac{\partial u}{\partial t}\right)_{t=0} = 0$$

14. a. State Baye's theorem

A bag A contains 3 red and 7 white balls A second bag B contains 5 red and 4 white balls. One ball is drawn at random from the first bag and transferred to the second bag. Now a ball is drawn from the second bag. It is found that the drawn ball is white. Find the probability that a red ball was transferred to bag B. (3+7)

15. Let X be a variable which follows a normal distribution with mean 30 and standard deviation 5. Then find the probabilities that

(i) 26 x 40 (ii) X 45 (iii)
$$|X - 30| > 5$$

(Given P (0 z 2) = 0.4772; P (0 z 0.8) = 0.2881
P (0 z 1) = 0.3413; P (0 z 3) = 0.4986) (10)

16. A dice is thrown 276 times and the result of these throws are as follows (10)

Face	1	2	3	4	5	6
Face frequency	40	32	29	59	57	59

Test whether the dice is biased or not (x_5^2 (0.05) = 11.07)

17. a). Fit a curve $y = a + bx + cx^2$ to the following data

х	0	1	2	3	4
у	1	1.8	1.3	2.5	6.3

b) The ranks of ten students in two subjects A and B are as follows

А	3	5	8	4	7	10	2	1	6	9
В	6	4	9	8	1	2	3	10	5	7

Then find the rank correlation coefficient

FACULTY OF INFORMATICS

B.E. 2/4 (IT) I-Semester (Back Log) Examination, May / June 2018

Subject: Discrete Mathematics

Time: 3 Hours

Max. Marks: 75

Note: Answer all questions from Part A and any five questions from Part B.

PART-A (25 Marks)

1.	State the converse, contrapositive and inverse of the implication: "If it snows today, Iwill	
	ski tomorrow".	3
2.	Define functionally complete set of connectives.	2
3.	What is the negation of the statement "All Americans eat cheese burgers"?	2
4.	Let f: A B, g: B C; for the sets A= $\{a,b,c\}$, B= $\{x,y,z\}$, C= $\{1,2,3,4\}$ find gof and its image.	
5.	How many bit strings of length 8 either start with a 1 bit or end with the two bits 00.	2
6.	If n is a positive integer then show that $=_0(-1)^r nC_r = 0$.	3
7.	How many different strings can be made by reordering the letters of the word	
	SUCCESS?	3
8.	From a group of 30 people, find the probability that atleast two people have the same	
	birthday? 3	
9.	Define Euler Graph.	2
10	. Explain Preorder, Inorder and Postorder tree traversals with an example.	3
	PART-B (50 MARKS)	
11	. a) Without using the truth table, show that $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg q$	
	are logically equivalent. b) Translate the statement $C(x) \cup \exists y(C(y) \cap F(x,y))$ into english, where C(x) is	5
	"x has a computer" and $F(x,y)$ is "x and y are friends" and the universe of discourse	
	for both x and y consists of all students in your school.	5
12	a) What is the Cartesian product AXBXC, where A={0,1}, B={1,2}, and	
	C={0,1,2}? b) Use Mathematical Induction to prove that n ³ -n is divisible by 3,	4
	whenever n is a positive integer.	6
13	. a) Find all solutions of the recurrence relation $a_n=3a_{n-1}+2n$. What is the	
	solution with $a_1=3?$	6
	Contd 2	

b) Are the events E, that a family with three children has children of both sexes, and F that a family with three children has at most one boy, independent? Assume that the eight ways a family can have three children are equally likely?

- 14.a) What is the variance of the random variable X(i,j)=2i, where i is the number appearing on the first dice and j is the number appearing on the second dice, when two dice are rolled? b) What is the coefficient of $x^{12} y^{13}$ in the expansion of $(x+y)^{25}$. 4
- 15. a) Suppose that R is the relation on the set of strings of english letters such that (a R b) if and only if I(a)=I(b), where I(x) is the length of the string x. Is R an equivalence relation? b) Solve the recurrence relation $a_n=8a_{n-1}+10^{n-1}$ and the initial condition $a_1=9$. Use Generating function to find an explicit formula for an
- 16.a) Define Eulers formula. Suppose that a connected planar simple graph with 20 vertices, each of degree 3. Into how many regions does a representation of this planar graph split the plane. 5 b) What is the prefix form for ((x + y) = 2) + ((x - 4)/3)? 5
- 17. a) Explain Kruskal's algorithm to find a minimum spanning tree with an example.

b) How many integers between 1 & 1000 which are not divisible by 2,3 or 5.

4 6

5

5

4

6

FACULTY OF ENGINEERING

B.E. II/IV(ECE) I Semester (Backlog) Examination, May/June 2018

Subject: Applied Mathematics

Time: 3 Hours

Max. Marks: 75

Note: Answer all questions from Part A & Any Five questions from Part B PART – A (25 Marks)

- 1. Solve 2p+3q=1
- 2. Reduce $4xyz=pq+2pqx^2y+2qxy^2$ to clainaut's form using the transformation $x^2 = X$ and $v^2 = Y$
- 3. Determine whether the function $f(z) = f(z) = \begin{cases} \frac{z \cdot \text{Re}(z)}{|z|} \\ 0 \end{cases}$

Is continuous at z=0

- 4. Integrate $(\overline{z})^2$ from 0 to 2+i along the line x=2y 5. Locate and classify the singular points of $f(z) = \frac{1 e^{2z}}{z^4}$
- 6. Find the bilinear transformation that maps the points $z = \infty$, i,0 into the points w=0,i, ∞
- 7. Perform two iterations of bisection method to find the cube root of 100
- 8. If $y_0=1$, $y_1=11$, $y_2=28$ and $y_3=28$ and $y_4=29$, find $\Delta^4 y_0$
- 9. Define coefficient of correlation and state its limits.
- 10. Show that the arithmetic mean of regression coefficients in greater than the correlation coefficient.

PART – B (50 Marks)

.11. (a) Form a partial differential equation by eliminating arbitrary constants a,b,c from

$$+\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

(b)Solve $z^2(p^2+q^2)=x^2+y^2$

- 12. a) If f(z) = u + iv is an analytic function and $u+v=(x+y)(2-4xy+x^2+y^2)$, find u, v and the analytic function f(z).
 - (b) State and prove Cauchy's integral formula.

Cont..2

13. (a)Find the Taylor's series expansion of $f(z) = \frac{r}{z^{Z}}$ about z=0

(b) Evaluate $(1+z+z^2)!/z + e^{1/(z-1)} + e^{1/(z-2)})$ dz, where C is |z| =, using

residue theorem

- 14. (a) If f(1)=168, f(7)=192 and f(15)=336, find f(10) using Lagrange's interpolation formula.
 - (b) Use the following data to find x for which y is minimum and find this value of y.

Х	0.60	0.65	0.70	0.75	
у	0.622	0.615	0.613	0.617	

15. (a) Find the least square parabola to the following data:

	-3	- 1		3
У	15	5	1	5

(b) Calculate the correlation coefficient from the following data:

Y 9 8 10 12 11 13 14 16 15	Х	1	2	3	4	5	6	7	8	9
	Y	9	8	10	12	11	13	14	16	15

16. (a) Solve pq = z by charpit's method.

(b) If f(z) = u+iv is analytic functions, show that $\nabla^2 u^2 = 2|f'(z)|^2$, where

(b) If $= x - y^2$, then find y (0 2) using Ruge-Kuffa method of order 4.
