Code No: 11377/CBCS/BL

FACULTY OF ENGINEERING

B.E. II – Semester (CBCS) (Backlog) Examination, May / June 2019 Subject: Engineering Mathematics – II

Time: 3 Hours Max. Marks: 70

Note: Answer all questions from Part A & any Five questions from Part B. PART - A (10x2 = 20 Marks)

- 1) Solve $\left(x-y^2\right)dx + 2xydy = 0$.
- 2) Find the orthogonal trajectories of the family of curves $ay^2 = x^3$ where 'a' is a parameter.
- 3) Find the particular integral of $(D^4 m^4)y(x) = \sin mx$ (where $D = \frac{d}{dx}$).
- 4) Find a particular integral of $(D^2 2D + 1) y(x) = x^3 e^x \left(\text{where } D = \frac{d}{dx} \right)$.
- 5) Determine the nature of the point x = 0 for the equation $xy'' + y \sin x = 0$
- 6) Evaluate $18P_3(x) + 6P_2(x) 7P_0(x)$ as a polynomial of x.
- 7) Evaluate $\Gamma(-\frac{5}{2})$
- 8) Evaluate $J_2(x)$ in terms of Jo(x) and $J_1(x)$.
- 9) Find $L\{t\cos 2t\}$
- 10) Evaluate $-L\left\{\frac{2}{S^3} + \frac{1}{S^2}\right\}$.

PART – B (50 Marks)

11.a) Solve $x \frac{dy}{dx} + 3y = x^3 y^2$.

b) Find the general solution of the differential equation

$$y = xp - p^3$$
 where $p = \frac{dy}{dx}$

- 12.a) Find the general solution of the differential equation $y''+2y' +2y = e^{-x}\cos x$. by using the method of variations of parameter.
 - b) Find the general solution of $x^2y'' 3xy' + 5y = \sin(\log x)$.
- 13. Using Frobenius method, find the series solution of x y''-(1+x)y'-2y=0.
- 14.a) Evaluate $\frac{d}{dx}[erf(rx)]$.
 - b) Evaluate $J_1''(x)$ in terms of $J_o(x)$ and $J_1(x)$.

contd...2

5

Code No: 11377/CBCS/BL

- 15.a) Evaluate $L\left\{\log\left(\frac{s-3}{s+3}\right)\right\}$.
 - b) State convolution theorem for Laplace transform.
 - c) Evaluate $t * e^{at}$ using Laplace Transformation.
- 16.a) A metal bar at a temperature 100° is place in a room at a constant temperature of 0°C. If after 20 minutes the temperature of the bar is half, find an expression for the temperature of the bar at any time.
 - b) Show that $nP_n(x) = xP'_n(x) P'_{n-1}(x)$
- 17. a) Using Laplace transform, solve the initial value problem $y''+y=e^tSin(t)$, y(0)=0=y'(0).
 - b) Show that $S(m,n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$.
