FACULTY OF ENGINEERING

B.E. 2/4 I - Semester (Backlog) Examination, November / December 2018

Subject : Mathematics - III (Common to All (Except I.T. & ECE))

Time : 3 Hours

Max. Marks: 75

Note: Answer all questions from Part-A & answer any five questions from Part-B.

PART – A (25 Marks)

1	Eliminate the arbitrary function of f to obtain a partial differential equation from $x^2 - y^2 + z^2 = f(xy)$	m (3)
2	Find the complete integral of px(1+y)=qy.	(2)
3	Find a_o in the Fourier series expression of the	(3)
	function $f(x) = \begin{cases} -x - f, & -f < x < 0 \\ x + f, & 0 < x < f \end{cases}$	
4	Solve $2u_x + u_t = 0$ where $u(0, t) = 5e^{-6t}$.	(2)
5	Six boys and six girls sit in a row randomly. Find the probability that the six girls sit together.	(3)
6	If the probability density function of a random variable 'X' is $f(x) = \begin{cases} k \ x^{m-1}(1-x)^{n-1} \ for 0 < x < 1 \\ 0 , \qquad otherwise \end{cases}$	(2)
	where $m > 0$ and $n > 0$ then find the falue of k.	
7	State any two applications of t – distribution.	(3)
8	Find the mean of χ^2 - distribution.	(2)
9	Fit a straight line of the form $y = a + bx$ to the following data.	(3)
	x-1357y171013	
10	Show that the geometric mean of regression coefficients is the coefficient of correlation.	(2)

PART – B (50 Marks) 11 (a) Solve $(x^2 + y^2 + yz)=p+(x^2 + y^2 - xz)q = z(x+y)$. (b) Find a complete integral of $p^2x + q^2y = z$ by using Charpit's method. (5) (5)

..2

(10)

(10)

(10)

12 Find the Fourier series of the function.

$$f(x) = \begin{cases} x & , & -f < x < 0 \\ f + x & , & 0 < x < f \end{cases}$$
 Hence deduce that
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{f}{4}.$$

13 Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to the conditions

$$u(0, y) = u(a, y) = 0$$
, $u(x, 0) = x$ and $u(x, b) = 0$.

14 A random variable X has the following probability distribution.

х	1	2	3	4	5	
P(x)	С	С	3c	c ² +c	6c ²	

Then find the value of c. Also evaluate P(X < 3), P(1 < X < 4) and $P(X \ge 4)$

15 Let X be a random variable which follows normal distribution with mean 120 and the standard deviation 20. Evaluate

(i) $P(X \ge 140)$ (ii) $P(X \le 80)$ and (iii) $P(100 \le X \le 115)$

(Given P($0 \le Z \le 1$) = 0.3413, P($0 \le Z \le 2$) = 0.4772. P($0 \le Z \le \frac{1}{4}$) = 0.08971). (10)

16 (a) Using the method of least squares fit a curve of the form y = ax^b to the following data.
(5)

Х	2	3	5	6
у	32	108	500	864

- (b) Find the mean of two variables x and y and the correlation coefficient between x and y if the regression lines of y on x and x on y are x + 6y =6, 2x + 3y = 9 respectively.
 (5)
- 17 (a) Define Gamma distribution and find its variance.(5)(b) Using the method of least squares, fit a parabola of the form(5) $y = a + bx + cx^2$ to the following data(5)

Х	-1	2	3	4	5
у	15	12	27	70	81

FACULTY OF ENGINEERING

B.E. 2/4 (ECE) I - Semester (Backlog) Examination, November / December 2018

Subject : Applied Mathematics

Time : 3 Hours

Max. Marks: 75

Note: Answer all questions from Part-A & any five questions from Part-B.

PART – A (25 Marks)

1	Form a partial differential equation by eliminating the arbitrary constants a and from $z = ax^3 + by^3$	d b (2)
2	Find the complete integral of $p^2y(1 + x^2) = qx^2$	(3)
3	Show that $f(z) = \overline{z}$ is not analytic at any point.	(2)
4	Evaluate $\int_{C} \frac{\sin z}{6z + f}$ where C is the circle $ z = 1$ with positive orientation.	(3)
5	Find the Taylor series of $f(z) = \frac{1-z}{z-2}$ around $z = 1$.	(2)
6	Find the residue of $f(z) = \frac{z-2}{z(z-1)(z-2)}$ at $z = 2$.	(3)
7	Find the Lagrange interpolating polynomial which fits the following data.	(2)
	x 2 3 f(x) 8 11	
8	If $y' = x + y - xy$, $y(0) = 2$ then evaluate $y(0.2)$ by using Euler's method. (Take h = 0.1)	(2)
9	Show that the correlation coefficient is the geometric mean of the regression	
10	coefficients. Show that $t \le r \le 1$, r is the coefficient of correlation.	(2) (3)
	PART – B (50 Marks)	
11	(a) Find the complete integral of $xp + 3yq = 2(z - x^2 q^2)$ by using Charpit's method.	(5)
	(b) Solve $p + q = x + y + z$	(5)
12	(a) Determine the analytic function $f(z) = u + iv$ if $u + v = e^{x} (\cos y + \sin y)$. (b) State and prove Cauchy's integral theorem.	(5) (5)
13	(a) Find the Laurent series of the function	(5)
	$f(z) = \frac{3}{2+z-z^2}$ in the regions	
	(i) $1 < z < 2$ (ii) $ z > 2$	
	(b) Evaluate $\int_{0}^{2f} \frac{\sin n}{3 + \cos n} d_n$.	(5)

..2..

- 14 (a) Find an approximate root of $x^3 + 4x 7 = 0$ by using bisection method. (perform 4 iterations).
 - (b) Construct the forward difference table for the data:

Х	1	2	3	4
f(x)	1	18	71	178

Hence determine the corresponding interpolating polynomial.

15 (a) Find the regression line of Y on X from the following data:

(5)

Х	10	15	35	40	50	
Υ	100	90	110	80	120	

(b) Using the method of least squares, fit a curve $y = a + bx + cx^2$ to the following data. (5)

Х	-1	1	2	3	5
у	7	5	1	- 5	- 23

- 16 (a) Evaluate $\int \overline{z} dz$ where C is the line segment form -1 i to 3 + i. (5)
 - (b) Find the bilinear transformation which maps the points z=1, I, -1 onto w = 0, 1, ∞ respectively.
- 17 (a) If $\frac{dy}{dt} = -\frac{1}{2}$ $\frac{1}{2}$, y(0)=1 then evaluate y (0.1) by using Runge-Kutta fourth order x + y(5) method.
 - (b) Find the rank correlation coefficient between X and Y from the following data which represents the marks of 5 students in two papers X and Y. (5)

(5)

(5)

(5)

FACULTY OF ENGINNERING

B.E. 2/4 (IT) I-Semester (Backlog) Examination, November / December 2018

Subject : Discrete Mathematics

Time : 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART – A (25 Marks)

1 Show that the function $f: Z^+ \rightarrow Z^+$ defined by f(x) is invertible. 3 2 Find prime factorization of 7007. 2 3 How many strings with seven or more characters can be formed from 2 "EVERGREEN". 4 State the generalized pigeonhole principle. 2 5 In how many different ways can eight identical cookies be distributed among three distinct children if each child receives at least two cookies and no more than 4 cookies? 3 2 6 State divide and conquer recurrence relation and give an example. 3 7 Write short notes on representation of relations. 3 8 Define Euler circuit and give an example. 2 9 Define minimum spanning tree. 10 Define graph isomorphism and give an example. 3

- 11 a) Show that $\sim (p \lor (\sim p \land q))$ and $\sim p \land d$ are logicall equivalent by developing a series of logical equivalences.
 - b) What is the truth value of f(x)p(x) is the statement " $x^2 > 10^4$ and the universe of discourse consists of positive integers not exceeding 4?
- 12 Using mathematical induction to prove formula of sums of geometric progression given?

$$\sum_{j=0}^{n} ar^{j} = a + ar + ar^{2} + \dots ar^{k} = \frac{ar^{n+1} - a}{r-1}$$

When r 1, where n is non-negative integers.

- 13 Find the solutions to the recurrence relation with initial conditions $a_0 = 2$ $a_1 = 5$ an = $6a_{n-1} - 11a_{n-2}$.
- 14 How many solutions to the $x_1 + x_2 + x_3 = 11$ have where x_1, x_2, x_3 are non negative integers with x_1 3, x_2 4, x_3 6? 10

..2

5

5

10

- 15 Draw Hasse diagram for poset ({1, 2, 3, 4, 6, 8, 12}, 1). Find maximal, minimal, greatest and least element if any.
- 16 a) Define a planar graph. Draw a planar representation of K4.
 - b) Find chromatic number of graph G and H

17 Explain Kruskal's algorithm to find minimal spanning three with an example.

10

10

4

6

FACULTY OF ENGINEERING

B.E. II – Semester (CBCS) (Supple.) Examination, Nov./Dec. 2018

Subject: Engineering Physics – II

Time: 3 Hours

Max. Marks: 70

Note: Answer all questions from Part A and any Five questions from Part B.

PART - A (10x2 = 20 Marks)

1) Calculate the longest wavelength that can be analyzed by rock – salt crystal of $\frac{0}{100}$

spacing 2.5 Å in the first order.

- 2) Define space lattice. How it is helpful to describe a crystal structure.
- 3) What are ferrites?
- 4) Define critical transition temperature and critical field for superconductors.
- Calculate the Hall coefficient of a specimen whose electrical conductivity is 2.12 ohm/m and charge carrier mobility is 0.3 m²/v.sec
- 6) Discuss the important applications of ferro electric materials.
- 7) Distinguish between bulk, thin films and nano materials.
- 8) What are the applications of AFM?
- 9) Discuss the effect of surface to volume ratio in nano materials.

10)Mention the optical and magnetic properties of nano materials.

PART – B (50 Marks)

11.a)	Distinguish solid materials based on band theory of solids	4
b)	Discuss the seven crystal systems in terms of lattice parametric consideration	
	and type of Bravais lattice.	6
12.a)	What are magnetic domains? Explain the Hysteresis loop of ferromagnetic	
	material.	5
b)	Write a note on high temperature superconductors and their applications.	5
13.a)	How the P-N junction is formed? Explain V-I characteristic graph of forward and	
	reverse bias phenomenon in PN junction diode.	5
b)	How do you determine the dielectric constant by capacitance bridge method?	5
14.a)	Explain the principle and applications of X-ray Fluorescence.	5
b)	Explain in detail about thermal evaporation technique to prepare thin films?	5
15.a)	What are nano materials? Why do they exhibit different properties?	5
b)	Discuss the ball milling synthesis of nano materials.	5
16.a)	Discuss the free electron theory of metals.	5
b)	Write a note on Type-I and Type-II superconductors? Explain their importance.	5
17. a)	Explain the phenomenon of ferro electricity and discuss how dielectric constant of	
	Barium Titanate changes with temperature.	5
b)	Describe the working of a thin film solar cell.	5
