FACULTY OF ENGINEERING

BE I-Year (Backlog) Examination, December 2019

Subject: Programming in C \& C++

Time: 3 Hours

Max. Marks: 75
Note: Answer All Questions From Part-A \& Any Five Questions From Part-B.
PART-A (25 Marks)
1 What is a variable? Write rules for declaring a variable. 2
2 List and explain relational operators. 3
3 What are two dimensional arrays? 3
4 What is \#define directive? 2
5 Write about enumeration data types. 2
6 Write about new and delete operators. 3
7 What is the use of try block? 3
8 What are reference parameters? 2
9 What are static member functions? 3
10 What is scope resolution operator? 2
PART-B (50 Marks)
11.a) Draw and explain block diagram of a computer. 6
b) Write an algorithm to find $\sin x$ value. 4
12. Explain repetition control structure with examples. 10
13. a) Write a program to implement linear search. 5
b) Explain call by reference technique with example. 5
14.a) How can we pass an array as argument to a function? Explain with example. 5
b) Write a program using structure for reading and printing different house
addresses containing name, house number, area and city.
15.a) Write a program for displaying contents of a file in reverse order. 5
b) Write a program to overload unary operator. 5
16. Write a program illustrating multilevel inheritance, with constructor and destructor. 10
17. Write short notes on:
a) Dynamic binding 4
b) Function templates 3
c) Inline function 3

FACULTY OF ENGINEERING

B.E. I - Semester (CBCS) Examination, December 2019
 Subject: Engineering Mathematics - I

Time: 3 Hours

Max. Marks: 70

Note: Answer all questions from Part A and any Five questions from Part B.

PART - A (10 x 2 = 20 Marks)

1) Define rank of a matrix. Find the value of k such that rank of $A=\left[\begin{array}{cc}-1 & 3 \\ 4 & k\end{array}\right]$ is 2 .
2) If $1,-1,2$ are the eigenvalues of a matrix A of order 3 . Find the determinant of the matrix $B=3 A^{3}-A^{2}+1$.
3) Discuss the convergence of the series $1+r+r^{2}+r^{3}+$ \qquad $+r^{n}+\ldots . ., r$ is a real number, when $r 1$.
4) Define absolute convergence and conditionally convergence of a series.
5) Expand $f(x)=e^{x} \sin x$ in powers of x.
6) Find oblique asymptotes of the curve $y=x+\frac{1}{x}$.
7) Determine $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{\sqrt{x^{2}+y^{2}}}$, if it exists
8) If $u=f(2 x-3 y, 3 y-4 z, 4 z-2 x)$, prove that $6 \frac{\partial u}{\partial x}+4 \frac{\partial u}{\partial y}+3 \frac{\partial u}{\partial z}=0$.
9) If $\vec{F}=x^{2} y \hat{i}+x y^{2} z \hat{j}-y z^{2} \hat{k}$, find $\operatorname{grad}(\operatorname{div} \vec{F})$.
10) State Stoke's theorem.

PART - B (50 Marks)

11.a) Determine the values a and b for which the system of equations

$$
\left(\begin{array}{ccc}
3 & -2 & 1 \tag{5}\\
5 & -8 & 9 \\
2 & 1 & a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
6 \\
3 \\
-1
\end{array}\right) \text { has }
$$

i) no solution
ii) a unique solution and
iii) an infinite number of solutions.
b) If the eigenvectors of a 3×3 matrix A corresponding to the eigenvalues $0,1,-1$ and $(1,1,1)^{\top}$, $(1,0,-1)^{\top}(-1,1,0)^{\top}$ respectively. Find the matrix A.
12. a) Test the convergence of the series $\left.\sum_{n=1}^{\infty} \frac{1.4 .7 \ldots \ldots \ldots \ldots(3 n-2)}{2.5 .8 \ldots \ldots ~} 3 n-1\right)$.
b) Discuss the convergence of the series $1-\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}-\frac{1}{4 \sqrt{4}}+$
13. a) State Langrage's value theorem and hence show that $|\sin b-\sin a| \leq|b-a|$
b) Find the evolute of the curve $x y=1$.
14. a) If $f(x, y)=\left\{\begin{array}{cc}\frac{x^{2} y(x-y)}{x^{2}+y^{2}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0)\end{array}\right.$

$$
\begin{equation*}
\text { find } \frac{\partial^{2} f}{\partial x^{2}} \text { and } \frac{\partial^{2} f}{\partial y^{2}} \text { at }(0,0) \tag{5}
\end{equation*}
$$

b) Find the maximum and minimum values of the function

$$
\begin{equation*}
f(x, y)=x^{4}+y^{4}-x^{2}-y^{2}+1 . \tag{5}
\end{equation*}
$$

15. Verify Green's theorem for $\oint_{C}\left(x y^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y$ where C is the boundary of the region defined by $y^{2}=8 x$ and $x=2$.
16. a) If $A=\left(\begin{array}{ccc}6 & 2 & -1 \\ -6 & -1 & 2 \\ 7 & 2 & -2\end{array}\right)$, find the matrix $B=A^{8}-3 A^{7}-4 A^{6}+12 A^{5}+3 A^{4}-9 A^{3}+2 A+3 I$ using Cayley-Hamilton theorem.
b) Find the curvature and radius of curvature of the curve $y=x^{2}-6 x+10$ at $(1,5)$.
17. a) If $z=f(x, y), x=r \cos \theta, y=r \sin \theta$, show that $\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}=\left(\frac{\partial f}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial f}{\partial \theta}\right)^{2}$.
b) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9, z+3=x^{2}+y^{2}$ at $(-2,1,2)$ (5)

FACULTY OF ENGINEERING \& TECHNOLOGY

BE / B. Tech (Bridge Course) II-Semester (Backlog) Examination, December 2019 Subject: Engineering Mechanics

Time: 3 Hours

Max. Marks: 75

Note: Answer All Questions From Part-A, \& Any Five Questions From Part -B. PART - A (25 Marks)

1. State the principle of transmissibility. 2 m
2. Define FBD and give two examples. 3 m
3. How the term centroid differs from centre of gravity? Explain in detail. 2 m
4. Define the terms angle of friction and cone of friction. 3 m
5. State and prove parallel axis theorem for area moment of inertia. 3 m
6. Calculate MMI for a sphere having radius 1 m and mass of 100 kg . 2 m
7. Differentiate between kinematics and kinetics. $2 m$
8. State and explain D Alembert's principle in detail. 3 m
9. A body wt 1000 N moves on a level horizontal road for a distance of 400 m . The resistance of the road is 10 m per 1000 N wt of the body. Find the work done on the body by its resistance.
10. A body vibrates in SHM with a period of oscillation 6 sec and an amplitude of 2 cm . Find the velocity and acceleration of the body at the mean position.

PART - B (50 Marks)
11. Three bars hinged at A and D, and pinned at B and C form a four link mechanism as shown in fig.1. Determine the value of P which will prevent motion.

Fig. 1
12. A uniform ladder 7.2 m long weighs 180 N . It is placed against a vertical wall at an angle of 60° with the ground. How for along the ladder can a 700 N man climb before ladder is on the verge of slipping. The angle of friction at all contact surfaces is 15°. 10 m
13. Derive the equations for $M . I$ about X and Y axis for a right angled triangle. 10 m
14. A shot is fired with a velocity of $30 \mathrm{~m} / \mathrm{s}$ from a point 15 m in front of the vertical wall and 6 m high. Find the angle of projection to the horizontal to enable the shot to clear the top of the wall. Find the time lapsed when the shot left the wall.
-2-

Fig. 2
16. Determine the force P to be applied to the weightless wedges to start them under a 500 N block as shown in fig.3. The coefficient of friction at all contact surfaces is 0.3 C

Fig. 3
17. Find the $C G$ of the section shown in fig. 4 about X and Y axis.

Fig. 4

