FACULTY OF ENGINEERING B.E. II-Semester (CBCS)(Backlog) Examination, November 2020

Subject : Engineering Mathematics - II

Time : 2 Hours

Max. Marks: 70

Note: Answer any five questions from Part-A \& any four questions from Part-B.

PART - A (5x2=10 Marks)

1 Find the general solution of $y^{\prime \prime}+2 y^{\prime}-3 y=0$.
2 Solve the differential equation $y^{\text {iv }}+5 y^{\prime \prime}+4 y=0$.
3 Determine for what values of a and b, the following differential equation is exact and obtain the general solution of the exact equation $\left(y+x^{3}\right) \mathrm{d} x+\left(a x+b y^{3}\right) \mathrm{dy}=0$.
4 Find the orthogonal trajectories of the hyperbolas $x^{2}-y^{2}=c$, c is a constant.
5 Classify the singular points of $x^{2} y^{\prime \prime}+\mathrm{a} x y^{\prime}+\mathrm{by}=0$, a and b constants.
6 Show that $\mathrm{P}_{\mathrm{n}}(-x)=(-1)^{\mathrm{n}} \mathrm{P}_{\mathrm{n}}(x)$. Hence find $\mathrm{P}_{\mathrm{n}}(-1)$.
7 Evaluate $\int_{0}^{\infty} \sqrt{x} e^{-x^{2}} d x$.
8 Evaluate $\int x^{2} J_{1}(x) d x$ in terms of the Bessel's function.
9 Find $L^{-1}\left[\frac{2 s+5}{s^{2}+25}\right]$.
10 Using Laplace transforms of periodic function verify that $L(\sin w t)=\frac{W}{w^{2}+s^{2}}$.

PART - B (4×15=60 Marks)

11 (a) Find the solution of the following systems of the equation using the elimination method $y^{\prime}{ }_{1}+y_{2}=4 \operatorname{sint}, y^{\prime}{ }_{2}+y_{1}=8 \cos t$.
(b) Find the general solution of $\left(D^{3}-6 D^{2}+12 D-8\right) y=18 e^{2 x}$.

12 (a) Find the orthogonal trajectories of the family of curves
(i) $r^{2}=c \sin (2 \theta)$
(ii) $r=c(\sec \theta+\tan \theta)$
(b) Find the general solution of the differential equation $y^{\prime}=y^{2}-(2 x-1) y+x^{2}-x+1$ if $y=x$ is a solution of the differential equation.

13 (a) Find a fourth degree polynomial approximate to the solution of the initial value problem $y^{\prime \prime}-\mathrm{y}=0,(0)=2, \mathrm{y}^{\prime}(0)=0$.
(b) State and prove orthogonal property of legendary polynomials.

14 (a) Prove that $\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x=\frac{2^{2 n+1}(n)^{2}}{(2 n+1)} n$ is positive integer.
(b) Evaluate $\int_{0}^{\infty} x^{1 / 3} e^{-x^{2}} d x$.

..2..

15 (a) Show that $\int x J_{0}^{2}(x) d x=\frac{1}{2} x^{2}\left[J_{0}^{2}(x)+J_{1}^{2}(x)\right]$.
(b) Show that $2 J_{v}^{\prime}(x)=J_{v-1}(x)-J_{v+1}(x)$.

16 (a) Solve the initial value problem $y^{\prime \prime}-5 y^{\prime}+4 y=e^{2 t}, y(0)=19 / 12, y^{\prime}(0)=8 / 3$.
(b) Find $\mathrm{f}(\mathrm{t})$ as the solution of the integral equation $f(t)=t+e^{-2 t}+\int_{0} f(\tau) e^{2(t-\tau)} d \tau$.

17 (a) Solve the initial value problems : $y^{\prime \prime}-2 y^{\prime}=\delta(t-1), y(0)=1, y^{\prime}(0)=0,0 \leq t \leq 2 .^{\prime}$
(b) Determine a value of the constant to such that $\int_{0}^{1} \sin ^{2}\left[\left(t-t_{0}\right) \delta\left(t-\frac{1}{2}\right) d t=3 / 4\right.$.

