FACULTY OF ENGINEERING

B.E./B.Tech. (Bridge Course) II-Semester (Backlog) Examination,

 November 2020
Subject : Mathematics

Time : 2 Hours

Max. Marks: 75
Note: Answer any seven questions from Part-A \& any three questions from Part-B.
PART - A (7x3=21 Marks)
1 Define (i) Probability (ii) Impossible and (iii) Certain event
2 Two coins are tossed simultaneous. Find the sample space.
3 Verify Rolle's theorem for $\mathrm{f}(x)=x^{2}$ in [-2, 2].
4 Find the radius of curvature of the curve $\mathrm{y}^{2}=x$ at $(1,1)$.
5 Integrate $\sin ^{2} x$.
6 Evaluate $\iint_{0} \int_{0} \int_{0} d z d y d x$.
7 Find the normal and unit normal vector to the surface $x y+2 z=8$ at (1, 2, 3).
8 Show that $\vec{F}=y z \hat{i}+x z \hat{j}+x y \hat{k}$ is solenoidal.
9 Show that $\beta(m, n)=\beta(n, m)$.
10 Define error function and complementary error function.
PART-B (3x18=54 Marks)
11 (a) Find the mean and mode for the following distribution.

x	1	2	3	4	5	6
f	9	8	12	11	13	7

(b) State and prove addition theorem of probability.

12 (a) Explain $\mathrm{f}(x)=\mathrm{e}^{x} \sin x$ in powers of x upto the term x^{5}.
(b) Find the curvature and radius of curvature of the curve $x^{2} y=x^{2}+y^{2}$ and $(-2,2)$.

13 (a) Find the volume of the solid generated by revolving the region bounded by $y=\sqrt{x}, y=0$ and $x=9$ about x-axis.
(b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar coordinates.

14 Verify Green's theorem for $\oint_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the square bounded by the lines $x= \pm 1, y= \pm 1$.

15 (a) Evaluate $\int_{0}^{\infty} \sqrt{x} e^{-x^{2}} d x$ using Gamma function.
(b) Show that $\beta(m, n)=\frac{\Gamma m \Gamma n}{\Gamma(m+n)}$.
..2..
16 (a) State and prove Cauchy's mean value theorem.
(b) Find the envelope of the family of curves $x \cos \alpha+y \sin \alpha=5$.

17 (a) Find the angle between the surface $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ At (2, -1, 2).
(b) Find the divergence and curl of the vector

$$
\vec{F}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}
$$

