Code No. 2405/CBCS/BL

FACULTY OF ENGINEERING B.E./B.Tech. (Bridge Course) II-Semester (Backlog) Examination, November 2020

Subject : Mathematics

Max. Marks: 75

Note: Answer any seven questions from Part-A & any three questions from Part-B.

PART – A (7x3=21 Marks)

- 1 Define (i) Probability (ii) Impossible and (iii) Certain event
- 2 Two coins are tossed simultaneous. Find the sample space.
- 3 Verify Rolle's theorem for $f(x) = x^2$ in [-2, 2].
- 4 Find the radius of curvature of the curve $y^2 = x$ at (1, 1).
- 5 Integrate $\sin^2 x$.

Time : 2 Hours

- 6 Evaluate $\int_{0} \int_{0} \int_{0} dz dy dx$.
- 7 Find the normal and unit normal vector to the surface xy + 2z = 8 at (1, 2, 3).
- 8 Show that $\vec{F} = yz \hat{i} + xz \hat{j} + xy \hat{k}$ is solenoidal.
- 9 Show that $\beta(m, n) = \beta(n, m)$.
- 10 Define error function and complementary error function.

PART - B (3x18=54 Marks)

11 (a) Find the mean and mode for the following distribution.

f 9 8 12 11 13 7	ſ	X	Ł	2	3	4	5	6
		f	9	8	12	11	13	7

- (b) State and prove addition theorem of probability.
- 12 (a) Explain f(x)=e^x sin x in powers of x upto the term x⁵.
 (b) Find the curvature and radius of curvature of the curve x²y= x²+y² and (-2, 2).
- 13 (a) Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$, y = 0 and x = 9 about *x*-axis.
 - (b) Evaluate $\int_{0} \int_{0} e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates.
- 14 Verify Green's theorem for $\oint_C (3x^2 8y^2) dx + (4y 6xy) dy$ where C is the square bounded by the lines $x = \pm 1$, $y = \pm 1$.
- 15 (a) Evaluate $\int_{0}^{\infty} \sqrt{x} e^{-x^{2}} dx$ using Gamma function.
 - **(b)** Show that $\beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$.

..2

- 16 (a) State and prove Cauchy's mean value theorem.
 - (b) Find the envelope of the family of curves $x \cos \alpha + y \sin \alpha = 5$.
- 17 (a) Find the angle between the surface $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ At (2, -1, 2).
 - (b) Find the divergence and curl of the vector

 $\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$