FACULTY OF ENGINEERING

B.E. II-Semester (AICTE) (Main \& Backlog) Examination, November 2020

Subject : Mathematics - II

Time : 2 Hours
Max. Marks: 70

Note: Answer Any five Questions from Part-A \& Any Four Questions From Part-B.
 PART - A (5x4=20 Marks)

1 Examine whether the vector $(1,2),,(3,4),(3,7)$ are linearly independent.
2 If $1,-1,2$ are the eigen values of a 3×3 matrix A, find the determinant of the matrix $A^{3}-2 A^{-1}+I$.
3 Define exact differential equation.
4 Find the singular solution of the Clairant's equation
5 Find the complementary function of $\left(D^{2}+D+1\right)^{2} y=e^{x} \tan x$.
6 Solve $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$.
7 Evaluate $\Gamma\left(-\frac{3}{2}\right)$.
8 State Rodrigue's formula and hence find $\mathrm{P}_{2}(x)$.
9 Find $\mathrm{L}\left\{\mathrm{e}^{-t}\right.$ sint cost $\}$
10 Evaluate $\int_{0}^{\infty} \frac{\sin t}{t} d t$ using Laplace transform.
PART - B (4×15=60 Marks)
11 (a) Test for consistency and hence solve the following system of equations. $x_{1}+2 x_{2}+x_{3}=2, \quad 3 x_{1}+x_{2}-2 x_{3}=1, \quad 4 x_{1}-3 x_{2}-x_{3}=3, \quad 2 x_{1}+4 x_{2}+2 x_{3}=4$
(b) Find the characteristics equation of $A=\left(\begin{array}{lll}4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1\end{array}\right)$ and hence find A^{-1}.

12 (a) Solve $\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0 . \mathrm{p}$
(b) Find the orthogonal trajectories of the family of parabolas $y^{2}=2 c x+c^{2}$.

13 (a) Find the general solution of the differential equation

$$
\frac{d^{3} y}{d x^{3}}-y=\left(e^{x}+1\right)^{2} .
$$

(b) Solve $y^{\prime \prime}+2 y^{\prime}+2 y=e^{-x} \cos x$ by the method of variation of parameters.

14 (a) Evaluate $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{4}}}$ using Beta and Gamma functions.
(b) Show that $P_{2 n}(0)=(-1)^{n} \frac{1 \cdot 3 \cdot 5 \ldots \ldots .(2 n-1)}{2 \cdot 4 \cdot 6 \ldots \ldots . .2 n}$ and $\mathrm{P}_{2 \mathrm{n}+1}(0)=0$.

15 (a) Find the inverse Laplace transform of $\log \left(\frac{5+a}{5+b}\right)$.
(b) Apply Laplace transforms to solve $y^{\prime \prime}+y=3 \cos 2 x, y^{\prime}(0)=0=y(0)$.

16 Reduce the quadratic form $Q=2(x y+y z+z x)$ to Canonical form using orthogonal transformation.

17 (a) Show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
(b) Apply convolution theorem to find $L^{-1}\left\{\frac{s}{\left(s^{2}+1\right)(s-1)}\right\}$

