FACULTY OF ENGINEERING B.E. I-Year (Backlog) Examination, October 2020

Subject : Mathematics – I		
Time : 2 HoursMax. Marks: 75		
PART – A		
Nc	ote: Answer any seven questions.	(7x3 = 21 Marks)
1	Test the convergence of the series $1 - \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \frac{1}{3^4} + \dots$	
2	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2n^3 + 5}{4n^5 + 1}$.	
3	Verify Rolle's theorem for $f(x) = (x + 2)^3(x - 3)^4$ in (-2, 3).	$\langle \rangle$
4	Find the evolute of the parabola $y^2 = 4ax$.	
5	If $\phi(cx - az, cy - bz) = 0$, show that $\frac{a\partial z}{\partial x} + \frac{b\partial z}{\partial y} = C$.	0
6	If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$, evaluate $\frac{\partial(u, v, w)}{\partial(x, yz)}$	at (1, -1, 0)
7	Find the directional derivative of $f(x, y, z) = xy^3 + yz^3$ at the poin vector i + 2j + 2k.	t (2, -1, 1) in the direction of
8	Find div \bar{r} and curl \bar{r} where $\bar{r} = xi + yj + zk$.	
9	Find the rank of $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$.	
10 Show that if λ is an eigen value of A, then $\frac{1}{\lambda}$ is an eigen value of A ⁻¹ .		
	PART – B	
Nc 11	te: Answer any three questions. (a) Discuss the convergence of the series $1 + \frac{2!}{2^2} + \frac{3!}{3^3} + \frac{4!}{4^4} + \dots$	(3x18 = 54 Marks)
	(b) Test the convergence of the series $\sum \frac{(n!)^2}{(2n!)} x^{2n}$.	
12	(a) If $(x) = \sin^{-1}x$, $0 < a < b < 1$, use mean value theorem to pro $\frac{b-a}{\sqrt{1-a^2}} < \sin^{-1}b - \sin^{-1}a < \frac{b-a}{\sqrt{1-b^2}}$. (b) Find the asymptotes of the curve $x^3 + 3x^2y - 4y^3 - x + y + 3x^2y$.	ve that 3 = 0.
13	(a) If $x = u (1 - v)$, $y = uv$, prove that J J' = 1. (b) Given $x + y + z = a$, Find the maximum value of $x^m y^n z^p$.	

14 Evaluate $\int_{s} \vec{F} \cdot d \vec{s}$ where $\vec{F} = 4xi - 2y^{2}j + z^{2}k$ and S is the surface bounding the region $x^{2} + y^{2} = 4$, z = 0 and z = 3.

15 (a) Test for consistency and solve 5x + 3y + 7z = 4; 3x + 26y + 2z = 9; 7x + 2y + 10z = 5.

(b) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and express

 $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10$ I as linear polynomial in A.

- 16 Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ to the canonical form and specify the matrix transformation.
- 17 Evaluate $\iint_{A} xy \, dx \, dy$ where A is the domain bounded by x-axis, ordinate x = 2a and the curve $x^2 = 4ay$.

FACULTY OF ENGINEERING BE I-Semester (CBCS) (Backlog) Examination, October 2020

Subject: Computer Programming & Problem Solving

Time: 2 Hours

PART – A

Note: Answer any five questions.

- 1) Convert 110110.11 to Decimal system.
- 2) What are variables and constants? Give examples.
- 3) Define Bitwise operators and give example.
- 4) Write a program to find factorial of a given number.
- 5) What are pre-processors? Give examples.
- 6) Define an array. Write its applications.
- 7) Write a program to add two matrices of 2 x 2 order.
- 8) What is a pointer? Write its applications.
- 9) What do you mean by a Union? Give example.
- 10) Give the description of self Referential structures.

PART – B

Note: Answer any four questions.

- 11. a) What are precedence and Associatively of Operators? Explain.
 - b) Discuss about type conversions with suitable example.
- 12. a) Write a program to find the sum of first 'n' natural numbers using for-loop.b) Write a program to find reverse of a given number using while loop.
- 13. a) What is two dimensional array? Write a program to multiply two 2x2 matrices.b) Explain about Bubble sort with example.
- 14. a) What are Lvalue and Rvalue? Explain about pointers to void.b) Give the outline of string manipulations functions.
- 15. Explain the following
 - a) Structures b) Typedef statement
- 16. a) Differentiate between call-by-value and call-by-reference with example.b) What are storage classes? Explain.
- 17. Write about
 - a) Files handling operations in C
 - b) Writ a program to convert the given number into binary form.

(4x15 = 60 Marks)

(5x2 = 10 Marks)

Max. Marks: 70