FACULTY OF ENGINEERING
 B.E. I-Year (Backlog) Examination, March/April 2021

Subject : Mathematics - II

Time: 2 hours
Max. Marks: 75
Note: Missing Data, if any, may be suitably be assumed.
PART - A
Answer any seven questions.
(7x3=21 Marks)
1 Find integrating factor of the differential equation

$$
\left(x^{2} y-2 x y^{2}\right) \mathrm{d} x-\left(x^{3}-3 x^{2} y\right) \mathrm{d} y=0 .
$$

2 Find the orthogonal trajectories of family of curves $r^{2}=a^{2} \cos 2 \theta$.
3 Solve $\left(D^{2}+1\right) y=0$.
4 Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=e^{3 x}$.
5 Define regular point and irregular singular point of the differential equation.
6 Show that $P_{n}^{\prime}(1)=\frac{n(n+1)}{2}$.
7 Define Complementary error function. Show that erfc $(x)+\operatorname{erfc}(-x)=2$.
8 Write the properties of Bessel functions.
9 Find L($\mathrm{t} \sin 3 \mathrm{t})$.
10 Find $L^{-1} \frac{\left(s^{2}-3 s+4\right)}{s^{3}}$.
PART - B

Answer any three questions.
11 (a) Solve $\frac{d y}{d x}=\frac{x^{2}+y^{2}+1}{2 x y}$.
(b) A body originally at $80^{\circ} \mathrm{C}$ cools down to $60^{\circ} \mathrm{C}$ is 20 minutes, the temperature of the air being $40^{\circ} \mathrm{C}$. What will be the temperature of the body after 40 minutes from the original.

12 (a) Solve by method of variation of parameters:

$$
\frac{d^{2} y}{d x^{2}}+y=\tan
$$

(b) Solve $\frac{d^{2} y}{d x^{2}} \frac{3 d y}{d x}+2 y=\sin 2 x$.

13 (a) Solve in series of the equation $\frac{d^{2} y}{d x^{2}}+x^{2} y=0$.
(b) Show that $n P_{n}(x)=x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)$.

14 (a) Show that $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$.
(b) Prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} \quad$ where $m, n>0$.

15 (a) Find $L\left(\int_{0}^{\infty} e^{-t} \cos t d t\right)$.
(b) Using convolution theorem, evaluate $L^{-1}\left(\frac{1}{\left(s^{2}+1\right)\left(s^{2}+9\right)}\right)$.

16 (a) Solve $x^{2}(y-\mathrm{p} x)=y \mathrm{p}^{2}$.
(b) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$.

17 (a) Show that $\int_{-1}^{1} x P_{n}(x) P_{n-1}(x) d x=\frac{2 n}{4 n^{2}-1}$.
(b) Using Laplace Transform, solve the equation

$$
\left(D^{2}+n^{2}\right) x=a \sin (n t+\alpha), x=D x=0 \quad \text { at } \quad t=0
$$

FACULTY OF ENGINEERING

 BE I - Semester (CBCS) (Backlog) Examination, March / April 2021
Subject: Engineering Mechanics-I

Time: 2 Hours

Note: Missing data, if any, may be suitably assumed

PART - A

Answer any five questions.
1 State lamis theorem.
2 Write down the difference between stable equilibrium, unstable equilibrium, neutral equilibrium.
3 Write down the vrignon's theorem for non-concurrent force system.
4 Explain coefficient of friction and angle of friction.
5 Write down the assumption made in the analysis of pin joint trusses.
6 State and explain triangular law of fore system.
7 Write down the characteristics of force.
8 What are the different factors which are not effecting the couple?
9 Classify the beam's based on the support condition.
10 What are the uses of wedge?

PART - B

Answer any four questions.
(4x15=60 Marks)
11 A block shown in fig-1 is acted up on by its weight $W=400 \mathrm{~N}$ and a horizontal force $F=600 \mathrm{~N}$ and also the pressure P exerted by the incline. The resultant R of these forces is parallel to the incline. Find P and R does the block move up or down the incline?

12 Determine the support reactions at $A, B, \& D$ for the beam shown in fig-2.

13 Locate the centroid of the plane area shown in fig-3 with reference to the given $\mathrm{X}-\mathrm{Y}$ axes.

..2..
14 Find M.I about given axes as shown in fig-4

15 Find the maximum force P of the given wedge as shown in fig-5

16 Find member forces of the given frame by using method of section.

17 Write short note on:
(a) Method of frame
(b) Pappu's theorem
(c) Classification of forcess

