BE III-Semester (Civil) (AICTE) (Backlog) Examination, November 2021

Subject: Engineering Geology

Time: 2 Hours

Missing data, if any, may be suitably assumed

PART - A

Note: Answer any Five questions.

- 1. Describe briefly how engineering Geology is useful in civil engineering
- 2. What are the types of rocks? Give examples of each
- 3. Define weathering. What are its types?
- 4. Define aquifers and Aquiclude
- 5. Define Geomorphology and importance of Engineering Geomorphology in site investigation.
- 6. What is meant by rock mechanics?
- 7. Write short note on Decorative stories and Roofing stones
- 8. What are the different types of dams?
- 9. Explain the importance of tunnels
- 10. Write briefly about origin of earthquake

PART - B

Note: Answer any Four questions.

(4x15=60 Marks)

- 11.a) Discuss the plutonic ,hypabyssal volcanic rocks with examples.b) Define folds. What are the different types of fold and explain any two.
- 12.a) What are the different types of Indian soils? Explain each type brieflyb) Write short notes on groundwater recharge
 - b) while short holes on groundwater recharge
- 13. a) Discuss various erosional and depositional Aeolian landforms.b) Write short notes on Seismic Refraction method
- 14.a) What are the geological considerations for the selection of Concrete aggregate?b) Write short notes on Highway and Runway Aggregates.
- 15.a) Define Tunnels. Write short notes on stand up time of rocksb) define Landslides and what are its types. How can landslides be prevented?
- 16.a) What are the problems associated with dam foundations?b) Mention the geology of any Indian dam.
- 17.a) Discuss the formation of soils. What are the engineering use of soils?b) Write short notes on Groundwater provinces of India.

(5x2=10 Marks)

Max marks: 70

B.E.III – Semester (EE/EIE) (AICTE) (Backlog) Examination, November 2021

Subject: Analog Electronics

Time: 2 Hours

Max marks: 70

Missing data, if any, may be suitably assumed

PART – A

Note: Answer any Five questions.

- 1. What is P-N junction diode? Draw its characteristics.
- 2. What is photodiode and write its applications.
- 3. Compare BJT and JFET.
- 4. What are the advantages of negative feedback?
- 5. Distinguish between amplifier and oscillator circuit.
- 6. What is an oscillator and classify different types of oscillators.
- 7. What is a Barkhausen criterion for oscillators?
- 8. What is an Op-amp? Draw block diagram of Op-amp.
- 9. What are the characteristics of an ideal Op-amp?
- 10. The parameters of crystal oscillator equivalent circuit are $L_s = 0.8$, $C_s = 0.08$, $R_s = 100$ and $C_p = 1.0$. Determine f_s and f_p .

PART - B

Note: Answer any Four questions.

- 11.a) What is a rectifier? Explain the operation of Centre tapped full wave rectifier with necessary diagrams and waveforms.
 - b) Differentiate half wave, full wave and bridge rectifiers.
- 12.a) What is the need of filter circuits? Explain the construction and working of L filter.b) Explain the difference between avalanche breakdown and zener breakdown.
- 13.a) Explain fixed biasing with meat diagram in detail.b) Explain small signal model of BJT.
- 14.a) Explain RC phase shift oscillator with neat diagram.
 - b) Compare class A, class B and class AB power amplifiers.
- 15. With the help of block diagram explain different types of feedback amplifiers based on sampling and mixing.
- 16.a) Explain differentiator using Op-amp.
 - b) Explain the operation of non-inverting and inverting Op-amp.
- 17. Write short notes on:
 - a) Clipper circuits
 - b) Sample and hold circuit
 - c) Zero crossing detector

(4x15=60 Marks)

(5x2=10 Marks)

B.E. (ECE) III-Semester (AICTE) (Backlog) Examination, November 2021

Subject: Probability Theory and stochastic Process

Time: 2 hours

Max. Marks: 70

Note: Missing data, if any, may be suitably assumed.

PART – A

Answer any five questions.

- 1 Find the probability of getting 2 diamond if we draw 2 cards at random from a pack of 52 cards.
- 2 State Bernoulli's Theorem.
- 3 The pdf of a continuous random variable X is given as f(x)8/x³; x > 2. Find its mean?
- 4 State central limit theorem.
- 5 The mean and variable of the binomial variable x with parameter n and P are 16 and 8. Find $P(x \ge 1)$ and P(x > 2)?
- 6 State Stochastic process.
- 7 Write relationship between power spectrum and auto correlation function.
- 8 Define characteristic function of random variable.
- 9 Write three properties of Probability Distribution function.
- 10 State mean Ergodic process.

PART – B

Answer any four questions.

11 (a)State Total Probability Theorem.

- (b)Two boxes are selected randomly. The first box contain 2 white balls and 3 black balls second box contain 3 white and 4 black balls (i) What is the probability of drawing a white ball (ii) If the selected ball is white then what is the probability that it is from the first box.
- 12(a) State probability density function and properties of it.
 - (b) If two dices is rolled and x is random variable which denotes sum of the number its faces. Obtain the distribution function and plot the graph.
- 13 Discuss the characteristic of Rayleigh, Uniform, Gamma, Binomial random variable using relevant expression and sketches of their distribution and density function.
- 14(a) Let X be a continuous random variable with density function
 - $f(x)=x/6+k; 0 \le x \le 3 = 0$ Elsewhere
 - (i) find the value of k (ii) Find P($1 \le x \le 2$).
 - (b) Obtain the characteristic function of Poisson random variable.
- 16 (a) State joint characteristic function and properties.
 - (b) The auto correlation function is given as $R_{xx}(\zeta) = 36 + 4/1+5\zeta^2$. Find the mean and variance of process of x(t).

(4x15 = 60 Marks)

- -

(5x2 = 10 Marks)

- 17 (a)Consider a random process X(t)=A sin(wt + ϕ) where A and ϕ are statistical independent and ϕ is uniform in the interval of (0, 2 π). Is the process WSS or not?
 - (b) State cross correlation function and state its 3 properties.

00,601

B.E. (AICTE) (M/P) III–Semester (Backlog) Examination, November 2021

Subject: Thermodynamics

Time: 2 hours

Max. Marks: 70

Note: Missing data, if any, may be suitably assumed.

PART – A

Answer any five questions.

(5x2 = 10 Marks)

- 1. What are the types of thermodynamic systems give examples.
- 2. Differentiate between intensive and extensive properties with examples.
- 3. Define Dalton's Law of partial pressures.
- 4. Define Perpetual Motion Machine I & II (PMM-I & PMM-II).
- 5. Define thermal efficiency of a heat engine.
- 6. State Kelvin Planck statement and Clausius statement for second law of thermodynamics.
- 7. Define pure substance.
- 8. Define saturated water, saturated steam, wet steam and superheated steam.
- 9. Draw the P-V and T-S diagram for a dual cycle.
- 10. What are the components of a Rankine cycle?

PART – B

Answer any four questions.

- 11. (a) Define and explain the concept of thermodynamics equillibrium.(b) Explain the Zeroth law of thermodynamics. What is its Significance?
- 12. (a) Explain the various temperature scales.
 - (b) A mass of 8 kg gas expands within a flexible container so that the p-v relation is of the form pv^{1.2} = constant. The initial pressure is 1000 kPa and the initial volume is 1 m³. The final pressure is 5 kPa. If the specific internal energy of the gas decreases by 40 kJ/kg, find
 (i) The final volume; (ii) Magnitude and direction of Work transfer;
 (iii) Magnitude and direction of Heat transfer. (iv) Sketch the process on a p-v diagram.
- 13. (a) Derive the Steady Flow Energy Equation (SFEE).
 - (b) A turbine operates under steady flow conditions, receiving steam at the following state: pressure 1.2 MPa, temperature 188°C, enthalpy 2785 kJ/kg, velocity 33.3 m/s and elevation 3 m. The steam leaves the turbine at the following state: pressure 20 kPa, enthalpy 2512 kJ/kg, velocity 100 m/s and elevation 0 m. Heat is lost to the surroundings at the rate of 0.29 kJ/s. If the rate of steam flow through the turbine is 0.42 kg/s, what will be the power output of the turbine in kW?

(4x15 = 60 Marks)

.....2

- 14. (a) Explain the Carnot heat engine cycle for a stationary (closed) system.(b) State and explain the Clausius Inequality.
- 15. (a) Derive the Maxwell's relations.
 - (b) Steam initially at 1.5 MPa, 300°C expands reversibly and adiabatically in a steam turbine to 40°C. Determine the ideal work output of the turbine per kg of steam.
 - 16. (a) Explain the Air standard Diesel cycle.(b) Explain the Brayton cycle.
- 17. Write short notes on the following:
 - (a) Macroscopic and Microscopic Approach.
 - (b) Internal Energy, Enthalpy and Entropy.
 - (c) Anomalous expansion of water

B.E. (AE) III-Semester (AICTE) (Backlog) Examination, November 2021

Subject: Thermal Engineering

Max. Marks: 70

Note: Missing data, if any, may be suitably assumed.

PART – A

Answer any five questions.

Time: 2 hours

- 1 Define zeroth law of thermodynamics.
- 2 What is thermodynamics system? State types of system.
- 3 Define Clausius and Kelvin plank statement of second law of thermodynamics.
- 4 Sketch P-V and T-S diagram of Carnot cycle.
- 5 What are the methods of improving efficiencies of gas turbines?
- 6 Explain the concept of reheating in gas turbine cycle.
- 7 Explain the formation of steam with the help of temperature enthalpy diagram.
- 8 Define COP and unit of refrigeration.
- 9 Define Hybrid vehicle.
- 10 Classify reciprocating air compressors.

PART – B

Answer any four questions.

- 11 (a) What is thermodynamic equilibrium?
 - (b) Derive steady flow energy equation for one inlet and one outlet.
- 12 (a) What are limitations of first law of thermodynamics?(b) Derive Clausius inequality. State its significance.
- 13 Explain the process of regeneration to improve the efficiency of Brayton cycle with the help of suitable sketch.
- 14 Explain the working of simple vapour compression refrigeration system with help of layout diagram and P H graph.
- 15 Discuss the current status, future developments and prospects of hybrid vehicles.
- 16 (a) What are the advantages and disadvantages of hydrogen as a fuel?(b) Explain the working principle of vapour absorption refrigeration system.
- 17 (a) Compare refrigerator, heat engine and heat pump.(b) What are applications of steady flow energy equation?

(4x15 = 60 Marks)

(5x2 = 10 Marks)

BE III - Semester (AICTE) (CME/IT) (Backlog) Examination, November 2021

Subject: Mathematics-III (Probability & Statistics)

Time: 2 Hours

Max .Marks: 70

Note: Missing data, if any, may be suitably assumed

PART – A

Answer any five questions.

- 1 State Baye's theorem.
- 2 A random variable X has the following probability distribution:

x	0	1	2	3
P(x)	1	1	3	1
	6	$\overline{2}$	10	30

Find E(X)

- 3 A die is thrown 4 times. Getting a number greater than 2 is a success. Find the probability of getting exactly one success.
- 4 Find the moment generating function of poisson distribution.
- 5 A continuous random variable X is uniformly distributed with mean 1 and variance 3. Find P(X<0).
- 6 Define exponential distribution.
- 7 Write normal equations for fitting a straight line of the form y = a + bx.
- 8 Show that the coefficient of correlation is the geometric mean of the regression coefficients.
- 9 Explain briefly F-test.
- 10 Write any two applications of Chi-square test.

PART – B

(4x15= 60 Marks)

- Answer any four questions.
- 11 (a) State and prove theorem of total probability.
 (b) A factory has four independent units A, B, C and D which produce 40%,30%,20% and 10% of identical items, respectively. The percentages of defective items produced by these units are 2%, 1%, 0.5% and 0.25% respectively. If an item is selected at random, find the probability that the item is defective.
- 12 (a) Find the mean and variance of binomial distribution.
 - (b) If X is a poisson variate such that $3P(x=4) = \frac{1}{2}P(x=2)+P(x=0)$, find the mean of X and $P(x \le 2)$.
- 13 (a) Define uniform distribution. Find the moment generating function of the uniform distribution.

(b) In a normal distribution exactly 7% of the items are under 35 and 89% of the items are under 63. Find the mean and standard deviation of the distribution.

14 (a) Find the rank correlation coefficient from the following data:

x	10	15	12	17	13	16	24	14	22
у	30	42	45	46	33	34	40	35	39

(b) In two large populations, there are 30% and 25% respectively of fair haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations? Test at 5% level of significance.

15 Fit a poisson distribution to the following data and test the goodness of fit at 5% level of significance.

x	0	1	2	3	4
f(x)	109	65	22	3	1

16 (a) A continuous random variable X has the probability density

function $f(x) = \begin{cases} a+bx, 0 \le x \le 1\\ 0 & \text{elsewhere.} \end{cases}$

If the mean of the distribution is $\frac{1}{3}$, find the values of a and b.

(b) Find the variance of normal distribution.

17 (a) If θ is the acute angle between the two regression lines, show that

 $\tan \theta = \frac{1-r^2}{r} \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$, where r, σ_x , σ_y have their usual meanings. Explain the significance of the formula when r=0 and r=±1.

(b) Find the least squares approximations of the form $y = ae^{bx}$ for the following data :

	x	0.5	1.0	2.0	2.5	3.0
\square	у	0.57	1.46	5.10	7.65	9.20

BE III – Semester (AICTE) (CSE) (Backlog) Examination, November 2021

Subject: Programming Languages

Time: 2 Hours

Missing data, if any, may be suitably assumed

PART - A

Note: Answer any Five questions.

- 1. What does it mean for a program to be reliable?
- 2. What three extensions are common to most EBNFs?
- 3. Define lexeme and token?
- 4. What are the design issues for union?
- 5. How does C supports relational and Boolean expressions?
- 6. What are the advantages and disadvantages of static local variables?
- 7. What are the different types abstractions in programming languages?
- 8. What are the design issues for exception handling?
- 9. What does it mean for a language to be nonprocedural?
- 10. What does a lambda expression specify?

PART - B

Note: Answer any Four questions.

- 11.a) What are the different categories of programming languages?
 - b) What are the factors that influence the basic design of programming languages?
- 12.a) What is a Record Type? Briefly discuss different design issues of Record Types.
 - b) What are Primitive Data Types? Discuss the characteristics of any two Primitive Data Types.
- 13.a) Explain associative arrays with an example
 - b) Discuss array types in detail.
- 14. a) Write short notes on overloaded operators.
 - b) Explain about parameter passing methods. With examples for each
- 15.a) Discuss Design Issues for OOP Languages.

b) Discuss the following with respect to subprograms:
 i. Design issues

- ii. Local referencing environments
- 16.a) Write short notes on Java Threads.
 - b) Explain about semaphores.

17.a) Discuss the following: i. LISP Data Types and Structures

- ii. LISP Evaluation
- b) Compare functional languages and Imperative languages.

(4x15=60 Marks)

(5x2=10 Marks)

Max marks: 70