FACULTY OF ENGINEERING

B.E / B.Tech (Bridge Course) I – Semester (Backlog) Examination,

October 2021

Subject: Engineering Physics

Time: 2 Hours

Max.Marks: 75

(7x3 = 21 Marks)

(3x18 = 54 Marks)

Note: Missing data, if any, may be suitably assumed. PART – A

Answer any seven questions.

- 1 Newton's rings are observed between a spherical surface of 100cm radius and a plane glass plate. Calculate the wave length of light used if diameter of 12th bright ring is 0.59cm.
- 2 Calculate packing fraction of SC, BC, FCC.
- 3 Explain optical activity.
- 4 Distinguish optical fibers in brief based on their refractive index.
- 5 Write a note on frequency dependence of dielectric polarization.
- 6 Discuss the success and failures of classical free electron theory.
- 7 Explain how population inversion is related to pumping.
- 8 Define diffraction.
- 9 Distinguish between dia, para, and Ferro, materials based on their spin alignment.
- 10 Explain how the properties of materials change at nano scale.

Answer any three questions.

- 11 a) Derive the grating equation and also discuss the intensity conditions with intensity distribution graphs.
 - b) Explain construction and working of Laurent's half shade polarimeter.
- 12 a) Drrive an expression for 1-D Schrödinger time independent wave equation.
 - b) Discuss in detail the general properties of super conductors.
- 13a) Explain the construction and working of He-Ne laser with neat diagram.b) Describe the classification of optical fibers in detail.
- 14 a) What are bravais lattice and explain in detail about different crystal systems.b) Derive an expression for carrier concentration in intrinsic semiconductors.
- 15 a) Give the different types of polarization? Obtain an expression for ionic Polarizability
 - b) Discuss Weiss molecular field theory of ferromagnetism.
- 16 a) Explain the sol-gel method of preparing Nano materials.b) Describe the construction and working of atomic force microscope (AFM).
- 17 a) Explain about newton's rings experiment
 - b) Write a short note on quarter wave plate and half wave plate.

FACULTY OF ENGINEERING

B.E. I – Year (Backlog) Examination, October 2021

Subject: Mathematics - I

Time: 2 Hours

Max. Marks: 75

(Missing data, if any, may be suitably assumed)

PART – A

(7x3 = 21 Marks)

1 Discuss the convergence of the series $\sum \left(1 + \frac{1}{n}\right)^{-n^2}$.

Note: Answer any seven questions.

- 2 State Raabe's test.
- 3 Find the Taylor series expansion of $f(x) = x^3 + 2x^2 + 3x + 2$ about x = 1.
- 4 Find the radius of curvature of the curve $y = x^2$ at (1,1).
- 5 Determine $\lim_{(x,y)\to(1,2)}\frac{x+2y}{2x+y}$.

6 If
$$x = r\cos\theta$$
, $y = r\sin\theta$, then find $\frac{\partial(x, y)}{\partial(r, \theta)}$

- 7 Find a unit normal vector to the surface $x^2 + 3y^2 + 2z^2 = 6$ at (2,0,1).
- 8 State Green's theorem.
- 9 Show that the vectors (1,2,3), (0,1,-1), (1,3,2) are linearly dependent.
- 10 Find the sum and product of the eigen values of the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$.

PART – B Note: Answer any three questions.

(3x18 = 54 Marks)

- 11 (a) Discuss the convergence of the series $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \dots$
 - (b) Prove that the series $\sum (-1)^{n-1} \frac{\cos^2 nx}{n\sqrt{n}}$ is absolutely convergent.
- 12 (a) State and prove Lagrange's mean value theorem. (b) Find all asymptotes of the curve $x^3 + y^3 = 3axy$.
- 13 (a) If $z = u^2 + v^2$ and $u = at^2$, v = 2at find $\frac{dz}{dt}$. (b) Find the maximum and minimum values of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$.
- 14 Verify Stoke's theorem for $\vec{F} = x^2\hat{i} xy\hat{j}$ around the square in the plane z = 0 and bounded by the lines x = 0, y = 0, x = a, y = a.

- 15 Find the eigen values and eigen vectors for the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 3 & 2 & 3 \end{pmatrix}$.
- 16 (a) Verify Rolle's theorem for $f(x) = (x-1)^2 (x-2)^3$ in [1,2]. (b) Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} dz dy dx$.
- 17 (a) If $\vec{F} = \text{grad}(x^3 + y^3 + z^3 3xyz)$, find curl \vec{F} .
 - (b) Find the nature, index and signature of the quadratic form $Q = 2(x^2 + xy + y^2)$.

FACULTY OF ENGINEERING B.E. I - Semester (AICTE) (Backlog) Examination, October 2021

Subject: Mathematics - I

Time: 2 Hours

Max. Marks: 70

(4x4 = 16 Marks)

(3x18 = 54 Marks)

- **Note:** i) First Question is compulsory and answer any three questions from the remaining six questions.
 - ii) Answers to each question must be written at one place only and in the same order as they occur in the question paper.
 - iii) Missing data, if any, may suitably be assumed.

Note: Answer any four questions.

- 1 (a) Examine the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{\log n}$.
 - (b) State Raabe's test.
 - (c) Verify Rolle's theorem to the function $f(x) = (x+2)^3(x-3)^4$ in (-2,3).
 - (d) If z = f(ax+by), then show that $b\frac{\partial z}{\partial x} a\frac{\partial z}{\partial y} = 0$.
 - (e) If u = f(x y, y z, z x), then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
 - (f) Evaluate $\iint_{R} xy \, dxdy$ where R is the domain bounded by x-axis, ordinate x=2a and the curve $x^2 = 4ay$.
 - (g) Find the normal vector to the surface $xy^3z^2 = 4$ at the point (-1,-1,2).

Note: Answer any three questions.

- 2 (a) Test the convergence of the series $\sum_{n=2}^{\infty} \frac{(n!)^2}{(2n!)} x^{2n}$. (b) Find the nature of the series $\sum_{n=2}^{\infty} \left(\sqrt[3]{(n^3+1)} - n \right)$.
- 3 (a) Find Taylor's series expansion of the function $f(x) = \sin x$ about the point $x = \frac{\pi}{4}$.
 - (b) Show that evolute of cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ is another cycloid.
- 4 (a) If u = x + y + z uv = y + z, uvw = z, show that $\frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2 v$.

..2..

..2..

(b) If $f(x,y) = \begin{cases} \frac{x^2 + y^2}{x - y}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$ then show that f(x, y) is not continuous at (0,0). Also find $f_x(0,0)$ and $f_y(0,0)$.

5 (a) Change the order of integration in $I = \int_0^1 \int_x^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2 + y^2}} dy dx$ and hence

evaluate it.

(b) Evaluate $\iint xy(x+y)dxdy$ over area between $y = x^2$ and y = x.

- 6 (a) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2,-1,2).
 - (b) Use Stoke's theorem to evaluate $\int_{C} [(x+y)dx + (2x-z)dy + (y+z)dz]$ where C is the boundary of the triangle with vertices (2,0,0), (0,3,0) and (0,0,6).
- 7 (a) Find the maximum distance of the point (3,4,12) from the sphere $x^2 + y^2 + z^2 = 4$.
 - (b) Find the coordinates of the center of curvature at any point of the parabola $y^2 = 4ax$. Hence show that its evolute $2ay^2 = 4(x-2a)^3$.