FACULTY OF ENGINEERING B.E. III - Semester (AICTE) (CME) Examination, October 2021

Subject: Operation Research

Max. Marks: 70

Time: 2 Hours

Note: Missing data, if any, may be suitably assumed.

PART – A

Answer any five questions.

(5x2 = 10 Marks)

1. What is unbounded solution in linear programming?

- 2. What is use of slack, surplus variable in LPP?
- 3. Define dual LLP. What are the advantages of duality?
- 4. Distinguish between Primal and Dual LPP
- 5. What is unbalanced transportation problem? How to solve it?
- 6. Define travelling salesman problem
- 7. What is preventive replacement?
- 8. What is the meaning of two-person zero sum game?
- 9. Classify the sequencing problem.
- 10. Explain Kendall's notation

PART – B

Answers any Three questions.

(3x18=54 Marks)

- 11. Use Big M method to Maximize Maximize $Z = 2x_1 + x_2 + 3x_3$, Subject to constraints $x_1 + x_2 + 2x_3 \le 5$, $2x_1 + 3x_2 + 4x_3 = 12$ and $x_1, x_2, x_3 \ge 0$.
- 12. Use dual simplex method to solve the LPP*Min* (*Z*) = $x_1 + 2x_2 + 3x_3$ Subjected to $x_1 - x_2 + x_3 \ge 4$, $x_1 + x_2 + 2x_3 \le 8$, $x_2 - 2x_3 \ge 2$ and $x_1, x_2, x_3 \ge 0$.

13. Find the initial basic feasible solution for the following TP by Vogel's method

	Destination										
		D1	D2	D3	D4	Supply					
.⊆	O1	11	13	17	14	250					
rigin	O ₂	16	18	14	10	300					
0	O ₃	21	24	13	10	400					
	Demand	200	225	275	250						

14. Solve the following Assignment problem

		Machines					
		M1	M2	М3	M4		
	J1	18	26	17	11		
	J2	13	28	14	26		
sdo	J3	38	19	18	15		
	J4	19	26	24	10		

15. Find the sequence for the following eight jobs that will minimize the total elapsed time for the completion of all jobs in the order ABC. Also determine the idle time of machines.

for				Job	(hrs)			
machines	I	II		IV	V	VI	VII	/111
A	4	6	7	4	5	6	6	2
В	8	10	7	8	11	8	9	13
С	5	6	2	3	4	9	15	11

16. A machine costs Rs 10,000. Its operating cost and resale values are given below. Determine at what time it could be replaced

Year	1	2	3	4	5	6	7	8
Operating cost	1000	1200	1400	1700	2000	2500	3000	3500
Resale value	6000	4000	3200	2600	2500	2400	2000	1600

- 17. a) A mobile repair man takes average time for repair as 30min, mobiles arrive at an average of 10 per day of 8hr. Find idle time of repair man and average number of units in the system
 - b) People arrive at a theatre ticket centre in a Poisson distributed arrival rate of 25 per hour. Service time is constant at two minutes. Calculate, (i) Mean number in the waiting line (ii) Mean waiting time (iii) utilization factor.

-2-

FACULTY OF ENGINEERING B.E. III - Semester (AICTE) (CSE) Examination, October 2021

Subject: Operation Research

Time: 2 Hours

Max. Marks: 70

Note: Missing data, if any, may be suitably assumed.

PART – A

Answer any five questions.

(5x2 = 10 Marks)

1. What is unbounded solution in linear programming?

- 2. What is use of slack, surplus variable in LPP?
- 3. Define dual LLP. What are the advantages of duality?
- 4. Distinguish between Primal and Dual LPP
- 5. What is unbalanced transportation problem? How to solve it?
- 6. Define travelling salesman problem
- 7. What is preventive replacement?
- 8. What is the meaning of two-person zero sum game?
- 9. Classify the sequencing problem.
- 10. Explain Kendall's notation

PART – B

Answers any three questions.

(3x18=54 Marks)

- 11. Use Big M method to Maximize Maximize $Z = 2x_1 + x_2 + 3x_3$, Subject to constraints $x_1 + x_2 + 2x_3 \le 5$, $2x_1 + 3x_2 + 4x_3 = 12$ and $x_1, x_2, x_3 \ge 0$.
- 12. Use dual simplex method to solve the LPP*Min* (*Z*) = $x_1 + 2x_2 + 3x_3$ Subjected to $x_1 - x_2 + x_3 \ge 4$, $x_1 + x_2 + 2x_3 \le 8$, $x_2 - 2x_3 \ge 2$ and $x_1, x_2, x_3 \ge 0$.

13. Find the initial basic feasible solution for the following TP by Vogel's method

	Destination										
		D1	D2	D3	D4	Supply					
.⊆	O1	11	13	17	14	250					
rigin	O ₂	16	18	14	10	300					
0	O ₃	21	24	13	10	400					
	Demand	200	225	275	250						

14. Solve the following Assignment problem

		Machines					
		M1	M2	М3	M4		
	J1	18	26	17	11		
	J2	13	28	14	26		
lobs	J3	38	19	18	15		
	J4	19	26	24	10		

....2

15. Find the sequence for the following eight jobs that will minimize the total elapsed time for the completion of all jobs in the order ABC. Also determine the idle time of machines.

for				Job	(hrs)			
machines	I	II		IV	V	VI	VII	/111
A	4	6	7	4	5	6	6	2
В	8	10	7	8	11	8	9	13
С	5	6	2	3	4	9	15	11

16. A machine costs Rs 10,000. Its operating cost and resale values are given below. Determine at what time it could be replaced

Year	1	2	3	4	5	6	7	8
Operating cost	1000	1200	1400	1700	2000	2500	3000	3500
Resale value	6000	4000	3200	2600	2500	2400	2000	1600

- 17. a) A mobile repair man takes average time for repair as 30min, mobiles arrive at an average of 10 per day of 8hr. Find idle time of repair man and average number of units in the system
 - b) People arrive at a theatre ticket centre in a Poisson distributed arrival rate of 25 per hour. Service time is constant at two minutes. Calculate, (i) Mean number in the waiting line (ii) Mean waiting time (iii) utilization factor.

-2-