FACULTY OF ENGINEERING

B.E. (Bridge Course) II Semester (Backlog) Examination, March / April 2022

Subject: Engineering Mechanics

Time: 3 Hours

Max. Marks: 75

(Missing data, if any, may be suitably assumed) PART - A

Note: Answer all questions.

1 Define Force and its characteristics with an example.
2 State and explain triangular law of force system.
3 Write down the vrignon's theorem for non concurrent force system.
4 What are the uses of wedge, jack?
5 Differentiate between mass moment of inertia and radius of gyration.
6 State pappu's theorem.
7 When velocity is constant, the acceleration is?
8 A railway truck of mass 16000 kg moving with a velocity $5 \mathrm{~m} / \mathrm{s}$. strikes another truck of mass 4000 kg at rest. If they move together after impact what will be their common velocity.
9 Define principle of work energy.
10 If a particle in SHM has an amplitude of 0.3 m and period of 1 sec then displacement of particle after 0.4 sec when the particle is at the right end of its path.

PART - B
Note: Answer any five questions.
11 Determine the resultant and inclination with respect to horizontal axis of given forces system as shown in Fig. 1

12 A beam AB of span 10M is loaded with UDL which varies from zero at one end to 1000 Kn at other end, according to relation $y=x^{2}$. Determine reaction at A and B.

13 Determine the force P required to start the wedge shown in figure 2 the angle of friction for all surfaces in contact is 15°.

Figure 2.

14 Determine the centroid of the shaded area shown in figure 3 with respect to the given $X-Y$ axes.

Figure 3.

15 Find the product of inertia of the shaded area in figure 4 about the specified X and Y axes.

Figure 4.

..3..

16 A golf ball is hit from an elevated tee to a green the distance horizontally is 108 mt as shown in figure5. If the initial velocity of the ball is 30 mps .at 53.1° to the horizontal how high is the tee above the green? Say tee is h mt above the green.

Figure 5.

17 An elastic string of length 2L tightly stretched between two rigid supports as in figure 6 carries a small ball of weight ' W ' at its midpoint. Show that for small displacements, the ball will have a SHM. Compute the time period.

Figure 6.

FACULTY OF ENGINEERING
 B.E. I -Year (CBCS) (Backlog) Examination, March / April 2022

(Common to all Branches)
Subject: Engineering Mathematics - I
Time: 3 Hours
Max. Marks: 70
(Missing data, if any, may be suitably assumed)
PART - A
Note: Answer all questions.

1. Find the sum and product of the eigenvalues of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 1 & 3\end{array}\right]$.
2. State Cayley-Hamilton theorem.
3. Examine the convergence of the series $\Sigma\left(\frac{n^{2}+1}{n^{2}}\right)$.
4. Define absolute convergence and conditional convergence of a series.
5. Find the radius of curvature of the curve $y=x^{2}$ at $(1,1)$.
6. Find horizontal and vertical asymptotes of the curve $y=x+\frac{1}{x}$.
7. Find the first order partial derivatives of $f(x, y)=y e^{-x}$.
8. Obtain the minimum value of $f(x, y)=4 x^{2}+9 y^{2}+8 x-12 y+4$.
9. Show that $\vec{v}=(x+3 y) \hat{\imath}+(y-3 z) \hat{\jmath}+(x-2 z) \hat{k}$ is solenoidal.
10. State Gauss divergence theorem.

PART - B
Note: Answer any five questions.
($5 \times 10=50$ Marks)
11. (a) Find the value of k such that the system of equations $2 x+y+2 z=0, x+y+3 z=0,4 x+3 y+k z=0$ has (i) trivial solution and (ii) non-trivial solutions.
(b) Find the canonical form, nature and index of the quadratic form $Q=2\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)$.
12. (a) Discuss the convergence of the series $\sum\left(\sqrt{n^{4}+1}-\sqrt{n^{4}-1}\right)$.
(b) Test for convergence of the series $1+a+\frac{a(a+1)}{1.2}+\frac{a(a+1)(a+2)}{1.2 .3}+\cdots \cdots$.
13. (a) State and prove Lagrange's mean value theorem.
(b) Find the Taylor series expansion of $f(x)=\sin x$ about $x=\frac{\pi}{4}$.
14. (a) Find $\frac{d f}{d t}$ at $t=0$, if $f(x, y)=x \cos y+e^{x} \sin y, x=t^{2}+1, y=t^{3}+t$.
(b) If $u=x-y+z, v=x+y-z, w=-x+y+z$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ and $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.
15. Verify Green's theorem for $\oint_{c}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.
16. Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$.
17. (a) Verify Rolle's theorem for $f(x)=x^{2}-2 x$ in $[-1,3]$.
(b) Find the directional derivative of $f(x, y, z)=x y+y z+z x$ in the direction of the vector $\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ at $(1,2,0)$.

FACULTY OF ENGINEERING
 B.E. I - Year (NON-CBCS) (Backlog) Examination, March / April 2022
 (Common to all Branches)
 Subject: Programming in C \& C++

Time: 3 Hours
Max. Marks: 75
(Missing data, if any, may be suitably assumed)
PART - A
Note: Answer all questions.
1 List and explain logical operators.
2 Draw block diagram of a computer.
3 What are multidimensional arrays?
4 What is \#include directive?
5 What is self referential structure?
6 Differentiate between C and $\mathrm{C}++$ programming.
7 What are access specifiers?
8 What is inline function?
9 What are static data members?
10 What are default arguments?
PART-B

Note: Answer any five questions.
($5 \times 10=50$ Marks)
11 (a) What are components of a computers? Explain functions of each component.
(b) Discuss various symbols used in flow charts.

12 Explain selection control structure with examples.
13 (a) Write a program for implementing binary search.
(b) Explain call by value technique with example.

14 (a) What are different operations which can be performed on pointers?
(b) Write a program using structures for reading and printing employee records containing name, employee id, department and salary.

15 (a) Write a program for copying contents of one file to other.
(b) Write a program to overload binary operator.

16 Explain in detail the concept of exception handling with an example program.
17 Write short notes on the following:
(a) Virtual functions
(b) Class templates
(c) Default arguments

