
Distributed Schedule Management in the Tiger Video Fileserver ’ 
l$ William J. Bolosky, Robert P. Fitzgerald and John R. Douceur 

Microsoft Research 
bolosky@microsoft.com 

Abstract 
Tiger is a scalable, fault-tolerant video file server constructed from a collection of computers 
connected by a switclied network., All content files are striped across all of the computers and disks 
in a Tiger system. In order to prevent conflicts for a particular resource between two viewers, 
Tiger schedules viewers so that ihey do not require access to the same resource at the same time. In 
the abstract, there is a single, global schedule that describes all of the viewers in the system. In 
practice, the schedule is distrib&d among all of the computers in the system, each of which has a 
possibly partially inconsistent view of a subset of the schedule. By using such a relaxed 
consistency model for the schedule, Tiger achieves scalability and fault tolerance while still 
providing $e consistent, coordinated service required by viewers. 

1. Introduction 
In the past few years, relatively inexpensive computers, disk 
drives, network interfaces and network switches have become 
sufficiently powerful to handle high quality video data. 
Exploiting this capability requires solutions to a number of 
different problems such as providing the requisite quality of 
service in the network, handlihg time sensitive data at the clients 
and building servers to handle the real-time, storage and aggregate 
bandwidth requirements of a video server. Researchers have 
attacked various facets of these problems, coming up with many 
creative solutions. We built a video server, choosing to use a 
distributed system structure. In building this server, we were 
faced with having to control the system in a scalable, fault tolerant 
manner. This paper describes our solution to this control problem. 

Tiger [Bolosky!J6], the technology underlying the Microsoft@ 
NetshowTM Professional Video Server, is a video fileserver 
intended to supply digital video data on demand to up to tens of 
thousands of users simultaneously. Tiger must supply each of 
these viewers with a data stream that is independent of all other 
viewers; multiplexing or “‘near video-on-demand” does not meet 
Tiger’s requirements. The key observations driving the Tiger 
design are that the data rate of a single video stream is small 
relative to the I/O bandwidth of personal computers, and that I/O 
and switching bandwidth is cheaper in personal computers and 
network switches than in large computer memory systems and 
backplanes. Tiger is organized as a collection of machines 
connected together with an ATM (or other type of) switched 
network. While this distributed organization reduces the 
hardware cost per stream of video and improves scalability over 
monolithic designs, it introduces a host of problems related to 
controlling the system. . 

The data in a Tiger file is striped across all of the computers 
and all of the disks within the system. When a client (viewer) 
Permission to make digital/hard copy of part or all.this work for 
personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advan- 
tage, the copyright notice, the title of the publication and its date 
appear, and notice is given that copying is by permission of ACM, 
Inc. To copy otherwise, to republish, to post on servers, or to 
redistribute to lists, requires prior specific permission and/or a fee. 
SOSP-16 10197 Saint-Malo, France 
0 1997 ACM 0-89791-916-5/97/0010...$3.50 

wants to play a particular file, Tiger must assure that the system 
capacity exists to supply the data to the viewer whhoul violating 
guarantees made to viewers already receiving service. In order to 
keep these commitments, Tiger maintains a schedule of viewers 
that are playing files. The size of this schedule is proportional to 
the total capacity of the system, and so central management of the 
schedule would not arbitrarily scale. In order to remove a single 
point of failure and to ‘improve scalability, the schedule is 
implemented in a distributed ,fashion across the computers 
comprising the Tiger server. Each of the computers has a 
potentially out-of-date view of part of the schedule (and no view 
at all of the rest), and uses a fault- and latency-tolerant protocol to 
update these views. Based on their views, the computers take 
action to send the required data to the viewers at the proper time, 
to add and remove viewers from the schedule, and to compensate 
for the failure of system components. 

Tiger behaves as if there is a single, consistent, global 
schedule. For reasons of scalability and fault tolerance, the 
schedule does not exist in that form. Rather, each of the 
component computers acts as if the global schedule exists, but a 
component computer only has a partial, possibly out-of-date view 
of it. Because the’ component computers are acting based on a 
non-existent global schedule, we call the global schedule a 
hallucination. Because many component computers share a 
common hallucination, we say that the hallucination is coherent. 
The coherent hallucination model is a particularly powerful one 
for distributed protocol design, because it allows the designer to 
split the problem into two parts: generating a correct centralized 
abstraction, and creating appropriate local views of that 
abstraction. 

The remainder of this paper is organized in four major 
sections. The first describes the basic design of Tiger, including 
the hardware organization, data layout and fault tolerance aspects 
of the system; necessary background to understand the 
functioning of the schedule. The next two sections describe the 
Tiger schedule, the first treating the schedule as a single, 
centralized object, and second covering its distributed 
implementation. The final major section presents performance 
results showing a modest sized Tiger system that scales linearly. 
The paper wraps up with a related work section and conclusions, 

212 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F269005.266692&domain=pdf&date_stamp=1997-10-01


SCSI Bus 
Switched 

Control Network 

$ Cub 1 Cubn 

ATM Switching Fabric 

Figure 1: Typical Tiger Hardware Organization 

2. The Tiger Architecture 

2.1 Tiger Hardware Organization 
A Tiger system is made up of a single Tiger controller machine, a 
set of identically configured machines - called “cubs” - to hold 
content, and a switched network connecting the cubs and the 
clients. The Tiger controller serves only as a contact point (i.e., 
an IP address) for clients, the system clock master, and a few 
other low effort tasks; if it became an impediment to scalability, 
distributing these tasks would not be difficult. Each of the cubs 
hosts a number of disks, which are used to store the file content. 
The cubs have one or more interfaces to the switched network to 
send tile data and to communicate with other cubs, and some sort 
of connection to the controller, possibly using the switched 
network or using a separate network such as an ethernet. The 
switched network itself is typically an ATM network, but may be 
built of any scalable networking infrastructure. The network 
topology may be complex, but to simplify discussion we assume 
that it is a single ATM switch of sufficient bandwidth to carry all 
necessary traffic. . 

For the purposes of this paper, the important property of 
Tiger’s hardware arrangement is that the cubs are connected to 
one another through the switched network, so the total bandwidth 
available to communicate between cubs grows as the system 
capacity grows (although the bandwidth to and from any 
particular cub stays constant regardless of the system size). 

2.2 File Data Layout 
Every file is striped across every disk and every cub in a Tiger 
system, provided that the file is large enough. Tiger numbers its 
disks in cub-minor order: Disk 0 is on cub 0, disk 1 is on cub 1, 
disk n is on cub 0, disk n+l is on cub 1 and so forth, assuming that 
there are n cubs in the system. Files are broken up into blocks, 
which are pieces of equal duration. For each file, a starting disk is 
selected in some manner, the first block of the file is placed on 

that disk, the next block is placed on the succeeding disk and so 
on, until the highest numbered disk is reached. At that point, 
Tiger places the next block on disk 0, and the process continues 
for the rest of the file. The duration of a block is called the “block 
play time,” and is typically around one second for systems 
configured to handle video rate (I-1OMbitls) files. The block play 
time is the same for every file in a particular Tiger system. 

Tiger uses this striping layout in order to handle imbalances 
in demand for particular files. Because each file has blocks on 
every disk and every server, over the course of playing a file the 
load is distributed among all of the system components. Thus, the 
system will not overload even if all of the viewers request the 
same file, assuming that they are equitemporally spaced. If they 
are not, Tiger will delay starting streams in order to enforce 
equitemporal spacing. 

One disadvantage of striping across all disks is that changing 
the system configuration by adding or removing cubs and/or disks 
requires changing the layout of all of the files and all of the disks. 
Tiger includes software to update (or “re-stripe”) from one 
configuration to another. Because of the switched network 
between the cubs, the time to restripe a system does not depend 
on the size of the system, but only on the size and speed of the 
cubs and their disks. 

This paper describes two different versions of the Tiger 
system, called “single bit rate” and “multiple bit rate.” The single 
bitrate version allocates all files as if they are the same bitrate. 
and wastes capacity on files that are slower than this maximum 
configured speed. The multiple bitrate version is more efficient in 
dealing with files of differing speed. Because the block play time 
of every file in a Tiger system is the same as that of any other file, 
all blocks are of the same size in a single bitrate server (and files 
of less than the configured maximum bitrate suffer internal 
fragmentation in their blocks). In a multiple bitrate server block 
sizes are proportional to the file bitrate. Tiger stores each block 
contiguously on disk in order to minimize seeks and to have 
predictable block read performance. Tiger DMA’s blocks directly 
into pre-allocated buffers, avoiding any copies. Tiger’s network 
code also DMA’s directly out of these buffers, resulting in a zero- 
copy disk-to-network data path. 

2.3 Fault Tolerance 
One goal of Tiger is to tolerate the failure of any single disk or 
cub within the system with no ongoing degradation of service. 
Tiger does not tolerate complete failure of the switched network 
or of the Tiger controller. There are several challenges involved 
in providing this level of fault tolerance. The first is to be sure 
that the file data remains available even when the hardware 
holding it has failed. The second is assuring that the additional 
load placed on the non-failed components does not cause them to 
overload or hotspot. A final challenge is to detect failures and 
reconfigure the responsibilities of the surviving components to 
cope with the loss. This section describes our answers to the first 
challenge. Maintaining the schedule across failures is covered in 
section 4. Detecting faults is accomplished by a deadman 
protocol that runs between the cubs. 

While the Tiger controller is a single point of failure in the 
current implementation, the distributed schedule work described 
in this paper removes the major function that the controller in a 
centralized Tiger system would have. The Netshown{ product 
group plans on making the remaining functions of the controller 
fault tolerant. When they have completed this task, the fault 
tolerance aspects of the distributed schedule will have come to full 

213 



Rim 

(fad 

Middle 

Hub 
(slow) 

Disk 0 

Primary 
0 ’ 

Disk 1 

Primary 
1 

Disk 2 

Figure 2: Tiger Disk-Data Layout 

fruition. Until that task is complete, distributed scheduling is 
interesting primarily for scalability and academic interest. 

Tiger uses mirroring to achieve data availability. At first 
glance, this might seem like an odd choice compared to using 
RAID-like parity striping [Patterson88]. The combination of two 
factors led us to choose mirroring. First, we expect bandwidth, 
rather than storage capacity, to be the limiting factor in Tiger 
systems. Second, the requirement to survive failures not only of 
disks but also of entire machines means that if Tiger used parity 
encoding it would need to move almost all of the file data for a 
parity stripe between machines in order to reconstruct the lost 
data, Furthermore, this movement would have to happen prior to 
the time that the lost data would normally be sent. The cost of the 
inter-machine bandwidth and buffer ‘memory for such a solution is 
large compared to the cost of mirroring. 

While mirroring requires that each data bit be stored twice, it 
does not necessarily mean that half of the bandwidth of a disk or 
machine needs to be reserved for failed-mode operation. Tiger 
declusters i,ts mirror data. That is, for each block of primary data 
stored on a cub, its mirror (secondary) copy is split into several 
pieces and spread across different disks and machines. The 
number of pieces into which the blocks are split is called the 
decluster factor. Tiger always stores the secondary parts of a 
block on the disks immediately following the disk holding the 
primary copy of the block. 

Because of declustering, when a single disk or machine fails 
several other disks and machines combine to do its work. The 
tradeoff in the choice of decluster factor is between reserving 
bandwidth for failed mode operation and decreased fault 
tolerance. With a decluster factor of 4, only a fifth of total disk 
and network bandwidth needs to be reserved for failed mode 
operation, but a second failure on any of 8 machines would result 
in the loss of data.’ Conversely, a decluster factor of 2 consumes 
a third of system bandwidth for fault tolerance, but can survive 
failures more than two cubs away from any other failure. 

Even if Tiger suffers the failure of two cubs near to one 
another, it will attempt to continue to send streams, although these 
streams will necessarily miss some blocks of data. If two or more 
consecutive cubs are failed, the preceding living cub will send 
scheduling information to the succeeding living cub, bridging the 

gap. 

’ In a decluster 4 system the 4 disks before the failed disk need to 
be alive because the failed disk’s mirror area holds some of the 
secondary copy of their data, and the 4 disks after the failed disks 
need to be alive because they hold the secondaries for the failed 
disk. 

Figure 2 illustrates Tiger’s data layout for a three disk, 
decluster factor 2 system. The notation “Secondary m-n” means 
that part n of each block in primary m is stored at the indicated 
place. Because the outer tracks of a disk are longer than the inner 
ones, modem disk drives store more sectors on these outer tracks. 
Disks have constant angular velocity, so the outer tracks pass 
under the drive head in the same amount of time as the inner 
tracks. As a result, disks are faster on the outer tracks than on the 
inner ones [Rueminler94, Van Metet971. Tiger takes advantage 
of this fact in its data layout. Primaries are stored on the faster 
portion of a disk, and secondaries are stored on the slower part. 
At any one time a disk can be covering for at most one failed disk, 
so for every primary read there will be at most one secondary 
read. The primary reads are decluster times bigger than the 
secondary reads, so Tiger can rely on the fact that at most 1 / 
(decluster + 1) of the data will be read from the slower half of the 
disk. 

3. The Tiger Schedule 
Over a sufficiently large period of time, a Tiger viewer’s load IS 
spread evenly across all components of a Tiger system. However, 
in the short term Tiger needs to assure that there are no hotspots. 
A hotspot occurs when a disk or cub is asked to do more work 
than it is capable of doing over some small period of time. 
Because the block play time is the same for all tiles and all files 
are laid out in the same order, viewers move from cub to cub and 
disk to disk in lockstep; alternately, this can be viewed as tho 
disks and cubs moving along the schedule in lockstep. A system 
that has no hotspots at any particular time will continue to have no 
hotspots unless another viewer starts playing. Thus, the problem 
of preventing hotspots is reduced to not starting a viewer in such a 
way as to create a new hotspot. 

Tiger uses the schedule both for describing the needed work 
to supply data to running viewers and for checking whether 
starting a new viewer would create a hotspot. If there is a viewer 

l33;Play 4 j ‘lot 2/RX?e ” 1 

Disk 1 
gl-1 

( Slot S/Viewer 2 1 

Disk 0 

Figure 3: Example Disk Schedule 

214 



Bandwidth 4 
(Mbit/s) 

SViewer 5 
‘. 

2&&i&-.:: - 

~ 

VO lMbit/s 

Time (units of block play time) 

Figure 4: Example Network Schedule 

who requests service, and whose request would create a hotspot, 
the system will delay starting the viewer until it can be done 
safely. This scheme gives variable delays for initial service, but 
guarantees that once a viewer is started there will be no resource 
conflicts. [Bolosky96] discusses the duration of the delays 
introduced, and concludes that for reasonable system parameters 
and restricted to running at SO-90% of capacity the delays are 
acceptable for most purposes. Section 5 contains measurements 
that support this conclusion for the particular Tiger system 
described there. 

3.1 The Disk Schedule 
In a single bitrate Tiger, the system maintains a schedule 
describing the work done by the disk drives. Because drives 
perform best when doing large transfers (amortizing a seek over a 
large amount of data to be read), Tiger reads each block in a 
single chunk. The disk schedule is an array of slots, with one slot 
for every stream of system capacity. One can think of the disk 
schedule as being indexed by time rather than by slot number. 
The time that it takes to process one block (the block play time 
divided by the maximum number of streams per disk) is called the 
block service tinze. This time is determined by either the speed of 
the disks or the capacity of the network interface, whichever is the 
bottleneck. So, each slot in the disk schedule is one block service 
time long, and the entire schedule is the block play time times the 
number of disks in the system. The schedule must be an integral 
multiple of both the block play and block service times. If not, 
the block service time is lengthened enough to make it so. This 
requirement is equivalent to saying &hat a Tiger system (but not a 
disk, cub or network card) must source an integral number of 
streams, and that the actual hardware capacity of the system as a 
whole is rounded down to the nearest stream. 

Each cub maintains a pointer into the schedule for each disk 
on the cub. These pointers move along the schedule in real time. 

When the pointer for a particular disk reaches the beginning of a 
slot in the schedule, the cub will start sending to the network the 
appropriate block for the viewer occupying the schedule slot. In 
order to allow time for the disk operations to complete, the disks 
run at least one block service time ahead of the schedule. Usually, 
they run a little earlier, trading off buffer usage to cover for slight 
variations in disk and I/O system performance. The pointer for 
each disk is one block play time behind the pointer for its 
predecessor. Because of the requirement that the total schedule 
length is the block play time times the number of disks, the 
distance between the last and the first disk is also one block play 
time. 

If a Tiger system is configured to be fault tolerant, the block 
service time is increased to allow for processing the secondary 
load that will be present in a failed state. If the disk rather than 
the network is the limiting factor the inside/outside disk 
optimization described in section 2.3 is taken into account when 
determining how big to make the block service time. 

3.2 The Network Schedule: Supporting 
Multiple Bitrates 
This section describes support for scheduling streams of differing 
bitrates on a Tiger system. The discussion is offered primarily 
because it serves to illustrate a particular difficulty (and its 
solution) in distributing the schedule. Multiple bitrate scheduling 
is only partially implemented in today’s Tiger systems. 

The concept of block service time as described in section 3.1 
has a number of underlying assumptions. One is that the block 
service time is the same for all blocks in all files, which is true 
only in a single bitrate system. A slightly more subtle assumption 
is that the ratio of disk usage to network usage is constant for all 
blocks. This assumption is necessary because the block service 
time is chosen so the most heavily used resource is not 
overloaded. In a multiple bitrate system, blocks of different files 

215 



may have different sizes. The time to read a block from a disk 
includes a constant seek overhead, while the time to send one to 
the network does not, so small blocks use proportionally more 
disk than network. Consequently, in a multiple bitrate Tiger 
system whether the network or disk limits performance may 
depend on the current set of playing files. Different parts of the 
same schedule may have different limiting factors. 

Because a combined s‘chedule cannot work for a system 
where block sizes vary from stream to stream, multiple bitrate 
Tiger systems implement a second schedule that describes the 
activity on the network, called a nehvork schedule. Unlike disks, 
networks interleave all of the streams being sent. Because 
networks process several streams simultaneously, the network 
schedule is a two dimensional structure. The x-axis is time and 
the y-axis bandwidth. The overall length of the schedule is the 
block play time times the number of cubs*, while the height is the 
bandwidth of a cub’s network interface cards (NICs). The length 
of an entry in the network schedule is one block play time, and the 
height is determined by the bitrate of the stream being serviced. 

Figure 4 shows a network schedule constructed by assigning 
bitrates to the viewers shown in the schedule in Figure 3. Each 
viewer is represented by a block of a certain color. For example, 
viewer 4 runs at 2 Mbit/s from time 0 to time 1, and viewer 0 runs 
at 3 Mbit/s from time 1.125 to 2.125. A vertical slice up from the 
pointer for a cub shows what that cub’s NIC is doing at the 
current time, so cub 2 is most of the way through sending its block 
for viewer 1, a little farther from the end of viewer 4’s block and 
about a third of the way into viewer 3’s block. As time advances, 
the cubs move from left to right through the schedule, wrapping 
around at the end. In one block play time cub 0 will be at exactly 
the same position that cub 2 occupies in the figure. The total 
height of entries at any point in the schedule shows the 
instantaneous load on the NICs when servicing that part of the 
schedule. 

A multiple bitrate Tiger system not only needs to assure that 
its NICs aren’t overrun, it also has to assure that disk bandwidth 
isn’t exceeded. Keeping a schedule similar to the one used for the 
single bitrate system but with variable size slots is sufficient but 
not necessary. The disk schedule in the single bitrate Tiger not 
only avoids hotspots, it specifies the time at which each block 
must be sent to the network. In the multiple bitrate system the 
network schedule serves this function. Therefore, the specific 
time ordering information in the disk schedule is not necessary in 
the multiple bitrate system; entries in the disk schedule are free to 
move around, as long as they’re completed before they’re due at 
the network. Because of this reordering property, fragmentation 
does not occur in the disk schedule. 

Fragmentation can be a problem in the network schedule. 
Consider the schedule shown in figure 4. The free bandwidth 
below the 6 Mbit/s level between when viewer 4 finishes sending 
and when viewer 2 starts is unusable, because any new entry 
would be one block play time long, and the gap in the schedule is 
slightly too short. In general, fragmentation can become fairly 
severe if viewers are started at arbitrary points. We have found 
that fragmentation is reduced to an acceptable level when viewers 
are forced to start at times that are integral multiples of the block 
play time divided by the decluster factor. 

* This is different from the disk schedule, whose length is the 
block play time times the number of disks. The difference is 
because the output of all of the disks on a cub are sent to the 
network through the same NICs. 

3.3 Scalability Considerations 
The question of whether it makes sense to distribute Tiger’s 
schedule management depends on how large Tigers can grow nnd 
how much work would be involved in central management of the 
schedule. This section explores a limit on the size of Tigers 
(which is probably not the limiting factor in the current 
implementation), and considers the work involved in centrnlly 
maintaining that large of a schedule, 

A fundamental limit of scalability in a Tiger system is the 
number of different disks that hold a particular file. A typical 
movie is about 100 minutes (6000 seconds) in length. If a block 
is 1 second long and disks are the same speed as the ones used In 
the experiment in section 5 (which can serve 10.75 streams each), 
using 6000 disks to store a movie would mean that a single copy 
of a movie could serve over 64,000 streams. In practice, WC 
would expect to not build systems quite this large, because 
serving the full 64,000 viewers would require that they be evenly 
spaced over 100 minutes. Still, with better disk technology it is 
not hard to imagine Tiger systems with as many as 30,000 to 
40,000 streams. Such a system would have on the order of 1000 
cubs. 

In a centrally scheduled system, the controller would have to 
track the entire schedule. Even with 40,000 streams, just keeping 
up with the schedule is quite possible with a reasonable computer. 
However, the controller would also have to communicntc the 
schedule to the cubs. If the message that the controller sends 
instructing a cub to deliver a block to a viewer is 100 bytes long 
(which is about the size of the comparable message sent from cub 
to cub in the distributed system), the controller would have to 
maintain a send rate of 3-4 Mbytes/s of control traffic through the 
TCP stack to the roughly 1000 cubs. Reliable and timely 
transmission of this much data through TCP, particularly to that 
many destinations, is probably beyond the capability of the clnss 
of personal computers used to construct a Tiger system. 

In addition to making control scalability easier, distributing 
the schedule also eliminates the most complex aspect of having 
the central controller as a single point of failure. Making its 
remaining functions fault tolerant is a simple exercise, and will be 
completed by the product team. We chose to distribute schedule 
management because of the combination of the fault tolerance and 
scalability advantages. 

4. Distributed Schedule Management 
Consider the descriptions of the Tiger schedules in section 3. 
They are worded as if there is a single disk or network schcdulc 
for the entire Tiger system. Conceptually, this is true. In prnctice, 
the schedule management is distributed among the cubs, Ench 
cub has partial (and possibly incorrect) knowledge of the globnl 
schedule, but behaves as if the entire schedule exists. The net 
result is a system that as a whole acts as if there were a global 
schedule, but which is scalable and fault tolerant. 

We use the term coherent hallucination to mean a distributed 
implementation of a shared object, when there is no physicnl 
instantiation of the object. The Tiger schedule is a coherent 
hallucination because no particular machine holds a copy of the 
entire schedule, but yet each behaves as if there is a single, 
coherent global schedule. 

There are two major components to a coherent hallucination. 
The first is the imaginary centralized abstraction, the 
“hallucination.” Second is the concept of a vierv. A view is the 
picture that a participant in a coherent hallucination-based system 
has of the hallucination. Views may be incomplete or out-of-dntc 

216 



without compromising the coherence of the underlying 
hallucination. The complexity in implementing a system using 
coherent hallucinations lies in managing the views and in taking 
action based on them. A necessary but insufficient condition for 
scalability is that participants’ views be limited to a size that does 
not grow as a finction of the scale of the system, Fault tolerance 
requires that every part of the hallucination is contained in more 
than one view, or can be reconstructed using only data from views 
available after a failure. 

4.1 Distributing the Disk Schedule 
There are two main alternatives in distributing the disk schedule. 
The first is to have each cub keep a complete but mostly out-of- 
date copy of the schedule. In this scheme, a cub would learn that 
a particular viewer was in a particular slot and would send the 
appropriate blocks to the viewer until the viewer requests stop or 
hits end-of-file. The second alternative is to have each cub keep 
track of only the portion of the schedule that’s near where its disks 
are processing and to propagate the schedule information around 
the ring of cubs at the same rate that the cubs move through the 
schedule. While the second alternative requires more 
communication between cubs, we chose it because it does not 
require each cub to keep track of a schedule whose size is 
proportional to the size of the system as a whole, and so scales 
better. It also requires less work to remove viewers from the 
schedule. 

The remainder of this section describes how the schedule is 
maintained among the cubs. Section 4.1.1 covers steady state 
operations, in which no viewers are entering or leaving the 
schedule. Section 4.1.2 describes the stop play operation and 
4.1.3 explains starting a viewer. Section 4.2 describes the 
network schedule in the multiple bitrate Tiger, and 4.3 covers 
lessons learned. 

4.1 .I Propagating Schedule Information in 
Steady State 
Every cub maintains a view of the portion of the disk schedule 
near each of its disks. That is, it keeps track of the schedule 
entries that the disk will encounter in the next few seconds, as 
well as a little while into the past. From time to time it forwards 
entries to the next cub in line. When a cub sends the contents of a 

* schedule entry to the next cub, it does so by sending a viewer state 
record (or just “viewer state”). A viewer state contains the 
address of the viewer, the file being played, the viewer’s position 
in the file, the schedule slot number, the play sequence number 
(how far the viewer has gotten into the current play request), and 
some other bookkeeping information. 

The amount of time between when a viewer state arrives at a 
cub and when that cub’s block for that viewer is due at the 
network is called the lead time of the viewer state. Two global 
system parameters, minVStateLead and maxVStateLead 
control the cubs’ management of viewer state forwarding. Cubs 
endeavor to keep the schedule updated at least minVStateLead 
into the future, while never forwarding viewer states more than 
maxVStateLead ahead of the schedule. Typical values are 4 
and 9 seconds, respectively. Maintaining a certain minimum lead 
time allows the cubs to tolerate some variability in 
communication latency, as well as allowing them to start disk I/O 
early and thus tolerate variable disk performance. Limiting the 
maximum lead time to a constant guarantees that the amount of 
schedule information that a cub needs to keep does not depend on 
the size of the system. Having a gap in between them allows the 

( Cub0 ) 

Figure 5: Viewer State Propagation Around the Ring of 
Cubs 

cubs to group viewer states together into a single network 
message before forwarding them, and so reduce communications 
overhead. 

Because Tiger tolerates the failure of cubs, it must ensure 
that schedule information is not lost when a cub crashes. As 
shown in Figure& each time a cub forwards a viewer state it 
sends it not only to the cub’s successor, but also to the second 
successor. Receiving a viewer state is idempotent: Duplicates are 
ignored. Thus, at least two cubs are aware of each schedule entry 
and if any single cub fails, some other cub will be sure that the 
schedule information continues to propagate. In the figure, cub 3 
is failed, and neither sends nor receives any messages. Double 
forwarding means that cub 2 sends its information on to cub 4, so 
the loss of cub 3 does not result in any loss of schedule 
information. 

We could have chosen to forward viewer states only once, to 
the next living cub in the ring. This would have halved the 
number of viewer states sent between cubs, and possibly removed 
the necessity of ignoring duplicate viewer states. We chose not to 
do this because cub failure detection is timeout based, and so 
involves a certain amotint of latency. Under the single forwarding 
model any time a cub failed the other cubs would have to go back, 
figure out what schedule information had been lost and recreate it. 
Furthermore, between the failure and the detection, not only 
would the data stored on the failed cub be lost, but so also would 
the data from the subsequent cubs that never received the viewer 
states. To us, the additional data loss and difficulty in getting a 
single forwarding protocol right was worse than incurring the cost 
of doubly forwarding viewer states. 

When a cub sees a schedule entry, that entry tells the cub it 
shouId send a particular block of a file to a certain viewer at a 
specified time. It does not tell the cub where on its disk to find 
the block. Each cub keeps track of the contents of the primary 
region of its disks, indexed by file and block numbers. Index 
entries are 64 bits long. Unlike traditional filesystems, the index 
is stored in the cub’s memory rather than on the data disks. Three 
factors contributed to this decision: The large block size means 
that there are relatively few blocks per disk and so relatively little 
metadata, the cost of the seek to do the metadata read is 
unacceptably large, and the fact that the metadata read needs to 
complete before the main block read begins would add latency 
into requests to start playing. 

217 



Cub 3 to net Cub 2 to net Cub 1 to net Cub 0 to net 

l+ block play tim 

Viewer 7 Empty 

I I 

Viewer 9 
Slot 6 Slot 7 Slot 8 

Viewer 1 Empty Empty 

AA 
scheduling 

lead 3 

Ownership of Ownership of Ownership of 
slot 5 slot 6 slot 7 

Slot 7 
boundary 

Figure 6: Ownership of Schedule Slots 

When a cub or disk is failed, Tiger needs to have the cubs 
holding the pieces of the secondary copy of the data send their bits 
to the user. The decision to send this data is made by the cub 
succeeding the failed component. When the succeeding cub 
makes this decision, it creates a special kind of viewer state called 
a mirror viewer state. Mirror viewer states are much like normal 
ones, except that they describe mirror schedule entries and they 
have different timing requirements. When a block needs to be 
sent from the mirror copy, each piece of the mirror is separated in 
time from the previous piece by (block play timefdecluster), rather 
than by (block play time) as is the case with normal viewer states. 
The cubs take these timing differences into consideration when 
deciding when to forward a mirror viewer state, and try to keep 
them between minVStateLead and maxVStateLead ahead of the 
operation they describe in the same way as normal viewer states. 

4.1.2 Removing Viewers from the Schedule 
Viewers leave the schedule in two different ways. They can reach 
end-of-file or request “stop playing.” Handling end-of-file is 
straightforward. Stop playing requests require tracking down 
recorded schedule information and killing it. 

In order to abort playing a file, a viewer sends a request 
(called a deschedule request) to the Tiger controller. The 
controller determines from which cub the viewer is receiving data, 
and forwards the request on to that cub and its successor. Much 
like viewer states, deschedule requests are idempotent. When a 
cub receives a particular deschedule request for the first time, it 
removes any schedule entries for the viewer being descheduled, 
forwards the deschedule request on to its successor and second 
successor, and remembers the deschedule. Because of variable 
communication latency and multiple path message propagation, it 
is possible for a cub to receive a copy of a viewer state after it has 
received a deschedule for that viewer. Before accepting a viewer 
state, a cub checks to see if it is holding a deschedule for that 
viewer in that slot, and if so it discards the viewer state. 

Deschedule requests are held for at least a few seconds after 
the slot they describe has passed the cub holding the request, in 
order to catch any late viewer state records. Cubs try to keep 
viewer states at least minVStateLead in front of the slot they 
describe, so trailing the slot is unusual. If a viewer state arrives so 
late that the cub would have already discarded any deschedules 
for that slot, the cub discards the viewer state. We have never 
detected this happening, but if it did, in the worst case it would 
could cause a viewer to be spontaneously descheduled because the 
viewer state is discarded without being forwarded. Because 

viewer states are discarded if they arrive later than the amount of 
time that deschedules are held, a viewer cannot be spontaneously 
rescheduled. 

Cubs pass deschedule requests around in much the same way 
that they do viewer state records, each cub forwarding every 
deschedule request to its successor and second successor. Tho 
deschedules propagate until they’re more than maxVStateLead 
in front of the slot being descheduled, at which time they’re 
guaranteed to have caught all viewer state records for the viewer, 
Unlike viewer state records, cubs forward deschedule requests as 
soon as they receive them. In theory, all that is necessary is that 
the deschedules move around the ring faster than the viewer state 
records, but we saw little advantage in slowing them down. 

The precise semantics of a deschedule request are “If this 
instance of viewer is in this schedule slot, remove the viewer,” It 
is these semantics that make the operation so simple to 
implement. If the correct viewer (and correct instance, where 
instance corresponds to the particular start request being 
descheduled) is not in the slot corresponding to the deschedulo 
request, the request does nothing. In order to carry out such a 
request, a cub receiving it does not need to know that its local 
view of the schedule is correct because applying the deschedule 
transformation will never reduce the correctness of its view. 
Having a deschedule request floating around after the slot has 
been reallocated will not cause incorrect results. 

4.1.3 Adding New Viewers into the Schedule 
When a viewer wishes to start receiving a file, the viewer sends a 
request to the controller. The controller forwards the request to 
the cub holding the first block that the viewer wishes to receive 
and to that cub’s successor for redundancy. When a cub receives 
such a request, or when a cub is holding a redundant copy and the 
cub’s predecessor has failed, the cub enters the request into a 
queue of viewers waiting for service. When the cub notices a free 
schedule slot, it enters the viewer from the head of the queue into 
the slot. 

Unlike the deschedule operation, inserting a viewer into a 
schedule slot requires that the cub know that the slot is not 
occupied. Just because a cub’s local view of the schedule shows a 
particular slot as being empty, it cannot conclude that the slot Is in 
fact empty; the viewer state simply may not yet have arrived, 
Inserting a viewer into a slot that is already occupied would result 
in a loss of service for one of the viewers occupying the slot. 

In order to avoid conflicts in a schedule slot, Tiger assigns 
ownership of each slot to at most one cub at a time. A cub may 

218 



Cub O’s View Cub l’s View Cub 2’s View 

vwnersnip 

SON15 

Disk 2 
SlN8 

S2N3 

S3N19 

S4N13 

S5N17 

S6N14 

S7N3 

I 
block 

play time 

Figure 7: Example of Views of the Schedule 

insert into a slot if and only if it owns that slot and the slot is 
empty. The time during which a cub owns a slot is small relative 
to the block play time, and hence to the distance between cubs. 
Consequently, there is a reasonable period of time for a cub that 
assigns a viewer to a slot to tell the next owner of the slot about 
the assignment. Figure 6 illustrates the concept of ownership of 
schedule slots. When a cub’s pointer (shown on the top of the 
diagram) is in the region between the arrows labeled “ownership 
of slot n,” the cub owns the slot and may schedule into it if it is 
empty. When no cub’s pointer is in the ownership region for a 
particular slot, the slot is unowned and no cub may schedule into 
it. The ownership period begins some time before the beginning 
of the slot. This is to allow the cub that made the assignment to 
perform the disk read in order to get ready to send the first block 
to the net. As a result, the scheduling lead is always at least one 
block service time. Typically, it is somewhat longer to allow for 
variations in disk performance. 

have seen the deschedule, or never have seen the old occupant in 
the first place. Tiger uses TCP to control the communication links 
between cubs, so messages sent directly from one cub to another 
arrive in order. Therefore, any cub directly connected to the 
inserting cub sees the deschedule before the newly inserted 
viewer, since the inserting cub sent out the deschedule before 
doing the insertion. If any cub’s predecessors either saw the 
deschedule before the insert, or never saw the removed viewer in 
the first place, they would forward the deschedule or never 
forward the viewer state for the descheduled viewer to the new 
cub, so by induction there is no conflict. 

The minVStateLead parameter is always much larger 
than the scheduling lead. Thus, in normal situations the preceding 
cubs would have sent the viewer state for any viewer occupying 
the slot in question long before the scheduling cub gains 
ownership of the slot. When a viewer is first added to a slot, there 
is at least block play time minus ownership duration for the new 
viewer state to get to the next owner of the slot. In the single 
bitrate Tiger the block play time must be bigger than the largest 
expected inter-cub communication latency. 

Figure 7 shows an example of views of the schedule for the 
first three cubs of a greater than three cub system. In this 
example, minVStateLead is artificially low so that the 
differences in views is more obvious. Unlike in Figure 3, each 
cub’s pointer is at the same position within its view. This is 
because the region of the schedule spanned by a view is relative to 
the position in the schedule being processed by disk in question; 
cubs do not keep information about parts of the schedule that do 
not currently interest them. In the example, cub 0 has not yet 
gotten around to forwarding the viewer state for viewer 2 in slot 
10. As a result, slot 10 in cub l’s view is shown as free. By the 
time that cub l’s ownership pointer gets to this slot, cub 0 will 
have forwarded the viewer state, so the slot will be filled. In 
practice, minVStateLead would be bigger, and the viewer 
state would have long ago arrived. 

There is an interaction between removing and inserting A more interesting case is slot 7. This slot was occupied by 
viewers into the schedule. If the inserting cub believes that the viewer 3, which was descheduled. When cub O’s ownership 
slot is empty because it saw a deschedule request for the previous pointer got to slot 7, it saw an empty slot, inserted viewer 9 and 
occupant, any cub seeing the newly inserted viewer must also forwarded the viewer state on to cubs 1 and 2. At the time shown 

219 



in the example, the initial deschedule for slot 7 is still in transit to 
cub 2, arriving on both of its incoming links. Because cub 2 has 
not yet seen the deschedule, it still shows slot 7 as holding viewer 
3. Cub 1 has seen the deschedule (and is forwarding it on to cub 
2), but has not yet seen the viewer state for the newly inserted 
viewer 9, and so it shows slot 7 as free. None. of these 
inconsistencies causes a problem, because by the time a cub takes 
action based on the contents of a slot, the slot is up-to-date. In 
practice, there would be much more lead time between the 
insertion by cub 0 and cub l’s,ownership pointer hitting slot 7, but 
the scale is shortened for illustrative purposes. 

4.2 Distributing the Network Schedule 
The single bitrate Tiger system has been complete and delivering 
data to customers in trial situations for about two years. 
Implementation of multiple bitrate Tiger systems is not yet 
completed, and in particular the disk schedule portion is not 
written. The network schedule is complete and working. We 
describe multiple bitrate Tigers only because they illustrate a 
more complex case in maintaining coherent hallucinations. 

The subsections of 4.1 describe the implementation of 
various operations on the Tiger schedule. Steady state only 
requires making sure that scheduling information propagates by 
the time it’s needed. Deleting a viewer from the schedule is 
similar in that no real coordination is required between cubs. 
Inserting a viewer into the schedule can still be accomplished 
locally by carefully limiting the circumstances under which a cub 
may make an insertion. In the multiple bitrate Tiger system 
schedule entries are a block play time wide. Inserting into the 
schedule requires knowing that the schedule capacity won’t be 
exceeded at any point. By definition, cubs are separated from one 
another in the schedule by a block play time, so it is impossible to 
employ the technique of the single bitrate Tiger wherein the 
inserting cub has exclusive ownership of the necessary chunk of 
the schedule. 

When a cub wants to make an insertion into the network 
schedule, it first checks its local copy of the schedule to see if it 
can rule out the insertion based solely on its view of the schedule, 
If it cannot, it tentatively makes the insertion, starts the disk’ 
operation to read the first block of the file, and sends out 
messages to the succeeding cub asking it if it’s alright to make the 
insertion according to its view of the schedule. When ‘a cub 
receives such a message, if its view of the schedule has sufficient 
room it makes an entry that reserves the necessary space and tells 
the originating cub. This entry will not result in any work being 
done or any schedule information moving to other cubs, only in a 
reservation of space. If the proposed entry would overflow the 
schedule, the succeeding cub tells the originating cub. 

If the originating cub receives confirmations from the 
succeeding cub early enough to start sending the initial block of 
the play on time, it will commit the schedule insertion and 
generate a viewer state for the new viewer. When the succeeding 
cub that made the tentative schedule insertion receives the viewer 
state, it will replace the reservation with a real schedule entry.1 
Because the originating cub overlaps the disk I/O and 
communication between cubs, there will almost always be time 
for the communication with the succeeding cub without having to 
increase the scheduling lead value. 

If a cub receives a negative confirmation of a tentative 
insertion, or doesn’t receive a response from the succeeding cub 
in time, it will abort the tentative schedule insertion and stop the 
disk If0 (if it’s not already complete). The originating cub 

replaces the start playing request at the head of the queue, and 
retries it when there is more available schedule space. 

4.3 Lessons ;from Tiger’s Distributed 
Scheduling I, - 
Because of Tiger’s basic striping policy, the cubs all move 
through the global schedule as time passes. This is not a 
necessary property of 1 coherent hallucinations. It is easy to 
imagine other systems in which participants’ views are divided 
statically, or in which they move throughout the hallucination in 
some less well structured way. The cubs’ lock step movement 
through the schedule is a property of the problem that Tiger solves 
rather than of coherent hallucinations in general. 

We found a number of techniques to be helpful in 
implementing Tiger’s coherent hallucination. Idempotencc of 
messages aids in fault tolerance by allowing routine double 
sending, so information is not lost even duting the period between 
a failure and its detection. Relying on bounded communication 
latency in the ownership protocol for start playing requests in the 
single bitrate system removes the necessity of two way 
communications to do schedule insertions. Insertion in the 
multiple bitrate system shows how communications latency can 
be hidden by overlapping it with speculative action (the disk 
read). In both the single and multiple bitrate systems, schedule 
insertions are committed (become a part of the coherent 
hallucination) when a message to that effect makes it to at lcast 
one other machine; in general, n-way fault tolerance requires that 
a decision be known by at least n+l machines. Tiger is able to 
overcome nearly all of the short-term performance variations that 
happen in the real world by doing work (disk reads) relatively far 
ahead of schedule when possible. 

5. Performance Measurements 
Unlike traditional systems where speed is the primary measure of 
success, a video server succeeds by consistently meeting its 
deadlines, by scaling well, and by dealing appropriately with 
component failures. The amount of work done to implement the 
Tiger schedule is small relative to the work needed to move 
megabytes of data per second from the disk to the network. 
Furthermore, the schedule protocols need to be latency tolerant to 
handle,network delays. As a result, the speed of the schedule 
management operations is of little consequence. 

This section describes an ATM Tiger configuration set up for 
2 Mbit/s video streams. It uses fourteen cubs, each of which is a 
Pentium 133 MHz personal computer with 64 Mbytes of RAM, a 
PC1 bus, four IBM Ultrastar 2.25 or 4.5 Gbyte drives and a single 
FORE Systems PCA 200E OC-3 ATM adapter. Most of the disks 
were of the 2.5 Gbyte variety, but a few of the older drives failed 
and had to be replaced with larger drives because the 2.5 Gbytc 
drives were no longer available. The 4.5 Gbyte drive is identical 
except that it has twice as many platters. As a result, performance 
is similar, but because we use only 2SGbytes of these disks all of 
the accesses are concentrated in the outer (faster) half of the disk. 
We arranged in our failed-mode test to have all of the mirroring 
disks be of the smaller variety to avoid skewing the disk 
performance numbers in that test. The cubs each have one 
Adaptec 3940UW dual channel SCSI controller with two of the 
disks connected to each of the SCSI channels. The Tiger 
controller is a Gateway 2000 133 MHz Pentium. It is on the ATM 
network and communicates with the cubs over it. Similarly, the 
cubs communicate with one another over the ATM. A variety of 
machines attached to the ATM network serve as clients: 22 

220 



200MHz Pentium Pro and 9 90MHz Pentium machines, with 
memory varying from 64 to 128 Mbytes. Each of these machines 
is capable of receiving between 15 and 25 simultaneous 2 Mbit/s 
streams depending on the processor type and memory size. For 
the purpose of data collection, we ran a special client application 
that does not render any video, but rather simply makes sure that 
the expected data arrives on time. This client application allows 
more than one stream to be received by a single client computer. 

This 56 disk Tiger system is capable of storing slightly more 
than 64 hours of content at 2 Mbit/s. It is configured for 0.25 
Mbyte blocks (hence a block play time of Is) and a decluster 
factor of 4. According to our measurements, in the worst case 
each of the disks is capable of delivering about 10.75 primary 
streams while doing its part in covering for a failed peer. Thus, 
the 56 disks in the system can deliver at most 602 streams. The 
FORE ATM network cards and system PC1 busses are sufficiently 
capable that the disks are the limiting factor in this configuration. 

We ran two experiments: unfailed and failed. The first 
experiment consisted of loading up the system with none of the 
components failed, The second experiment had one of the cubs 
(and consequently all of its disks) failed for the entire duration of 
the run. In each of the experiments, we ramped the system up to 
its full capacity of 602 streams. 

In both experiments we increased the load on the server by 
adding 30 streams at a time (except that we added 2 during the 
final step from 600 to 602 streams), waiting for at least 50s and 
then recording various system load factors. The clients generated 
reports if they did not see all the data that they expected, and we 
kept track of the reports of lost data. 

We loaded the system with 64 different files, each 1 hour in 
length. These files were filled with a test pattern rather than 
actual video data; unlike real video which varies somewhat in 
bitrate from second to second, the test files completely filled the 
available 2 Mbit/s bandwidth. The clients randomly selected a 
tile, played it from beginning to end and repeated. Because the 
clients’ starts were staggered and the cubs’ buffer caches were 
relatively small (20 Mbytes/cub), there was a low probability of a 
buffer cache hit. We measured the overall cache hit rate at less 
than 0.05% over the entire run for each of the experiments. The 
disks were almost entirely full, so reads were distributed across 
the entire disks and were not concentrated in any particular 
portion. 

The most important measurement of Tiger system 
performance is its success in reliably delivering data on time. We 
measured this in two ways in our experiments. When the server 
fails to place a block on the network for whatever reason it reports 
that fact. When a client fails to receive an expected block, it also 
reports it. In the non-failed experiment, the server failed to place 
15 blocks on the network, each because the disk read hadn’t 
completed in time. These missed disk completions were spread 
over the entire test, rather than being clustered at the highest load. 
Thus, we believe that these lost blocks are indicative of occasional 
blips in disk performance rather than of overloads. In addition to 
the 15 blocks that were not available from the disk on time, the 
clients reported 8 blocks were undelivered. Unlike the disk- 
related missed blocks, the client-reported ones happened at the 
highest system load. Most likely, they were due to overloads at 
the clients rather than at the server because they happened on the 
more heavily loaded clients. The non-failed test sent more than 
4.1 million blocks and over a Tbyte of data, for an overall loss 
rate of about 1 block in 180,000 (1 in 275,000 if you discount the 
blocks that may have been lost by the clients rather than by the 
server). 

After the ramp-up in the failed mode test, we allowed the 
system to run at 100% schedule load (602 streams) for about an 
hour. During the ramp up phase, the server had failed to place 46 
blocks on the network, in each case because the disk had not 
completed the read. The clients were more evenly loaded in this 
test than in the non-failed test, and as a result reported receiving 
every block that the server claimed to have sent. The ramp up 
phase attempted to send about 3.6 million blocks, fdr an overall 
loss rate of about 1 in 78,000. During the hour long run at full 
load, the disks failed to complete an additional 54 blocks among 
over 2.1 million total blocks scheduled, for a loss rate of just over 
1 in 40,000. We believe that these end-to-end loss rates are well 
within acceptable limits for most applications. 

In addition to measuring undelivered blocks, we also 
measured the load on various system components. In particular, 
we measured the CPU load on the controller machine and cubs, 
and the disk loading. The cub CPU number reported in our graphs 
is the mean of the load average of each cub measured over a 50 
second period. The cubs typically had loads very close to one 
another, so the mean is representative of the load on each cub. 
Disk load is the percentage of time during which the disk was 
waiting for an UO completion (i.e., the time between when the cub 
asked Windows NT to read from the disk and when NT reported 
that the read had completed). Again it is the mean over all disks, 
but all disks had similar loads, so it is representative. In the failed 
mode test, the disk load reported is for the disks of one of the cubs 
that was mirroring for the failed cub, rather than for the disks of 
all of the cubs in the system. 

We measured the control traffic between the cubs as a 
function of the system load. For the most part, this traffic consists 
of viewer state messages. Our graphs show the control traffic in 
bytes per second from one particular cub to aI1 other cubs. In the 
failed mode test, we measured the control traffic from a cub that 
was mirroring for the failed cub. As you might expect, the control 
traffic in failed mode is roughly double that in non-failed mode, 
because for each primary viewer state forwarded, The mirroring 
cub must also forward a mirror viewer state. In any case, the 
highest control traffic that we saw was under 21 Kbytes/s. 

Figures 8 and 9 (on the last page) show the measured 
numbers for the normal operation and one cub failed tests, 
respectively. The mean Ioad measurements should be read 
against the left hand y-axis scale, while the control traffic curve 
uses the right hand scale. 

Observe that the machine’s loads increase as you would 
expect: The cubs’ load increases linearly in the number of 
streams, while the controller’s does not depend on system load. 

Even with one cub failed and the system at its rated 
maximum load, the cubs didn’t exceed 85% mean CPU usage. We 
believe that most of the CPU time was spent packetizing the video 
data to be sent to the clients. In the failed mode test at full 
schedule load, Tiger ran the disks on the mirroring cubs at over 
95% duty cycle while still delivering aI1 streams in a timely and 
reliable fashion. Each disk delivered 3.36 Mbytes/s when running 
at load (10.75 0.25 Mbyte/s streams/disk, plus 25% for mirroring). 

At the highest load, the mirroring cubs were delivering 43 
streams (plus 10.75 streams for the failed cub) at 2 Mbit&, and so 
were sustaining a send rate of over 13.4 Mbytes/s, not including 
overhead or control traffic. 

Figure 10 shows the distribution of stream start times versus 
the schedule load. This graph combines the stream starts from 
both the failed and non-failed tests, for a total of 4050 starts. 
Each start is represented by a gray dot on the graph at the 
appropriate schedule load and delay coordinate. The heavy black 
line represents the mean of the starts at that particular schedule 

221 



load. It looks lower than you would expect because most dots are 
clustered at the lower loads and overwrite one another on the 
graph. We did not show startup times for schedule loads lower 
than SO%, but they were all clustered around 1.8 seconds, the 
minimum startup time. 1 second of this time is due to the time to 
transmit a 1 second Tiger block. The test client records the 
receive time of a block to be when the last byte of the block 
arrives rather than when the first byte arrives. Video rendering 
(non-test) clients are free to begin rendering before the entire 
block arrives, however, so they may mask some of this second. 
The remaining 800ms is a combination of network latency and 
scheduling lead (which includes time for the first block disk read). 

Even at schedule loads of 95%, the mean time to start a 
viewer is less than 5 seconds. However, there are a reasonable 
number of outliers that took over 20 seconds. For that reason, we 
do not recommend running Tiger systems at greater than 90% 
load, and suggest limiting them to even lower loads. Tiger 
contains code to prevent schedule insertions beyond a certain 
level, which we disabled for this test. At very high schedule 
loads, some insertions took about -as long as the entire 56s 
schedule to complete, and in larger systems would take longer. 

A final measurement was the time for the system to 
reconfigure from a cub failure. We loaded the system to 50% of 
capacity and cut the power to a cub. We inspected the clients’ 
logs and found about 8 seconds between the earliest and latest lost 
block. 

6. Related Work 
Tiger systems are typically built entirely of commodity hardware 
components, allowing them to take advantage of commodity 
hardware price curves. By contrast, other commercial video 
servers, such as those produced by Silicon Graphics[Nelson95] 
and Oracle[Laursen94], tend to rely on super-computer 
backplanes or massively parallel memory and I/O systems in 
order to provide the needed bandwidth. These servers also tend to 
allocate entire copies of movies at single servers, requiring that 
content be replicated across a number of servers proportional to 
the expected demand for the content. Tiger, by contrast, stripes all 
content, eliminating the need for additional replicas to satisfy 
changing load requirements. [Berson94] proposes an 
independently developed single-machine disk striping algorithm 
with some similarities to that used by Tiger. SPIFFI 
[Freedman961 is a parallel file system implemented on an Intel 
Paragon system that can stripe data across large numbers of disks 
and can be used for multimedia files (as well as for more 
traditional parallel filesystem tasks). 

There is a certain similarity between the coherent 
hallucination model and distributed [Li88; Nitzberg911 or tightly 
coupled [Kuskin94; LaRowe911 shared memory multiprocessing. 
Both types of systems have a notion of a global abstraction upon 
which multiple participants act. Both require some attention by 
the programmer to keep coherence between the participants. The 
primary difference lies in that shared memory systems do not have 
a hallucination, but rather directly implement the global 
abstraction, They are usually more tightly coupled, and often lack 
fault tolerance. In these systems, a view corresponds to the 
portion of the shared data structure that is used by any particular 
participant. Because the view is not explicit to the programmer, it 
is often harder to judge the scalability and access patterns. 

The implementations of some existing wide scale distributed 
systems can be viewed as coherent hallucinations. For example, 
the Domain Name System [Mockapetris88] can be viewed as a 
simple form of coherent hallucination. A directory of the global 

namespace is the hallucination, while each DNS server’s 
authoritative knowledge and cached informatlon make up the 
views. Other examples include protocols such as RIP [Malkin94], 
OSPF [Moy94] and BGP [RekhteBS] for IP routing. In these 
protocols, the existence, up/down state and speed/load of all of the 
routers and links in the network take the place of the 
hallucination, and the current set of beliefs about them correspond 
to views. These protocols differ from Tiger’s coherent 
hallucination in that the views describe the entire system rather 
than just a subset, but like a view in a coherent hallucination they 
are allowed to be out of date. A further example is the portion of 
the Network Time Protocol [Mills911 dealing with cascaded 
synchronization. The synchronization tree is a hallucination; it 
describes the dynamically varying hierarchy of timing 
propagation through’ a synchronization subnet, yet it is not fully 
represented at any node in the system. Each node’s view is the 
peer selection process performed with respect to the node’s 
immediate neighbors. 

7. Summary and, Conclusions 
Tiger is a video server that is designed to scale to tens of 
thousands of simultaneous streams of digital video. It stripes its 
content files across a collection of personal computers and high 
speed disks, and combines the file blocks into a stream through an 
ATM switch. It uses a schedule to prevent resource conflicts 
among viewers. In the abstract, the schedule is a data structure 
whose size is proportional to that of the Tiger system. In practlcc 
the machines comprising the Tiger system see only part of tho 
global schedule, and have only non-authoritative knowledge about 
most of what they know, a technique we name “coherent 
hallucination.” 

We found that: 

. Tiger maintains itsschedule in a manner that is fault tolerant, 
robust and scalable. 

. Tiger is able to provide a number of streams of video data 
that is not limited by its schedule management algorithms, 
but rather by its hardware’s bandwidth. 

Acknowledgements 
We would like to thank Troy Batterberry, Akhlaq Khatri, Erik 
Hedberg, and Steven Levi for the use of their equipment and 
talents in collecting the data for the performance measurements. 
We would also like to thank Bill Schiefelbein, Chih-Kan Wang, 
Aamer Hydrie and the rest of the NetshowTM Pro Video Server 
team for their help with the software and ideas we describe. WC 
owe a debt to the SOSP program committee and outside reviewers 
for their suggestions on the organization and presentation of the 
paper. We would like to thank Garth Gibson, Rick Rashid and 
Nathan Myhrvold for their architectural suggestions during the 
early phase of the Tiger project, and Fyeb for dex. 

Bibliography 
[Berson94] S. Berson, S. Ghandeharizadehi R. Muntz, X. Ju, 

Staggered Striping in Multimedia Information Systems, 
In ACM SIGMOD ‘94, pages 79-90. 

[Bolosky96] W. Bolosky, J. Barrera III, R. Draves, R. Fitzgerald, 
G. Gibson, M. Jones, S, Levi, N. Myhrvold, R, Rashid, 
The Tiger Video Fileserver. In Proceedings of the Sixth 
International Workshop on Network and Operating 

222 



System Supportfor Digital Audio and Video. IEEE 
Computer Society, Zushi, Japan, April 1996. Also 
available from www.research.microsoft.com in the 
operating systems area. 

[Freedman961 C. S. Freedman, J. Burger and D. J. Dewitt. 
SPIFF1 - A Scalable Parallel File System for the InteI 
Paragon. In IEEE Trans. on Parallel and Distributed 
Systems, 7(1 I), pages 11851200, November 1996. 

[Ku&in941 J. Ku&in, D. Ofelt, M. Heinrich, J. Heinlein, R. 
Simoni, K. Gharachorloo, J. Chapin, D. Nakahira, J. 
Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. 
Hennessy. The Stanford FLASH Multiprocessor. In 
Proceedings of the 21st International Symposium on 
ComputerArchitecture, pages 302-313, April, 1994. 

[LaRowegl] R. LaRowe, C Ellis and L. Kaplan. The Robustness 
of NUMA Memory Management. In SOSP 13, pages 
137-151,199l. 

[Laursen94] A. Laursen, J. Olkin, and M. Porter. &acle Media 
Server: Providing Consumer Based Interactive Access 
to Multimedia Data. In ACMSIGMOD ‘94, pages 470- 
477. 

[Li88] K, Li. IVY: A Shared Memory Virtual Memory System 
for Parallel Computing. In Proceedings ofthe 1988 
International Conference on Parallel Processing, pages 
II-94 - II-101.1988. 

[Malkin94] G. Malkin. RIP Version 2 Protocol Analysis. RFC 
1721. November, 1994 

[Mills911 D. L. Mills. Internet Time Synchronization: The 
Network Time Protocol. In IEEE Transactions on 
Commmlications, pages 1482-1493, Vol. 39, No. 10, 
October, 1991. 

[Moy94] J. Moy. OSPF Version 2. RFC 1583. March, 1994. 
[Nelson951 M. Nelson, M. Linton, and S. Owicki. A Highly 

Available, Scalable ITV System. In SOSP IS, pages 54- 
67. December, 1995. 

[Mockaptecis88] P. Mockapetris and K. Dunlap. Development of 
the Domain Name System. In Proceedings of 
SIGCOMM ‘88, pages 123-133, April 1988. 

[Nitzberg91] B. Nitzberg and V. Lo. Distributed Shared Memory: 
A Survey of Issues and Algorithms. Computer, 

100 - 

00 .. 

a0 .. 

70 - 

a0 T 

0 100 2cm 3OQ 400 500 600 

streams rtunnrng 

--ConlroUerCRI----(lrbCRI-----~kCpad--.---.~nfrolByfes 

Figure 8: Tiger Loads, No Cubs Failed 

L4(LIJ:JL-OU, AU&lSL, 17~~1. 

[Patterson881 D. Patterson, G. Gibson, R. Katz. A Case for 
Redundant Arrays of Inexpensive Disks (RAID). In 
ACM SIGMOD ‘88, pages 109-l 16. 

[Rekhter95] Y. Rekhter, T. Li. A Border Gateway Protocol 4 
(BGP-4). RFC 1771. March, 1995. 

[Ruemmler94] C. Ruemmler and J. Wilkes. An Introduction to 
Disk Drive ModeIing. Computer, 27(2): 17-28, March, 
1994. 

[van Meter971 R. Van Meter. Observing the Effects of Multi- 
Zone Disks. In Proceedings of the USENIX 1997 
Annual Technical Conference, page 19-30, January, 
1997. 

100, 
I 

93 

0 

0 loo 200 WI 400 500 600 

Streams IUnnlng 

-ConlmnerCPU &MirmringCubCPU ----NmMimingCubCPU 

--.--.-l.~irmrhgOiskLoad . ..-...COlllWl9plS 

Figure 9: Tiger Loads, One Cub Failed 

m 
45 

04 . I . I . . I 

50% 55% 60s 65% 70% 75% aox 85% 90% 95% i~)o/. 
Schedule Load 

Figure 10: Stream Startup Latency 

223 


