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UNIT-I 

REVIEW OF DISCRETE TIME SIGNALS AND SYSTEMS 

Signals-Definition 

Anything that carries information can be called as signal. It can also be defined as a physical 

quantity that varies with time, temperature, pressure or with any independent variables such as 

speech signal or video signal. 

The process of operation in which the characteristics of a signal (Amplitude, shape, phase, 

frequency, etc.) undergoes a change is known as signal processing. 

Note − Any unwanted signal interfering with the main signal is termed as noise. So, noise is also 

a signal but unwanted. 

Discrete Time signals 

The signals, which are defined at discrete times are known as discrete signals. Therefore, every 

independent variable has distinct value. Thus, they are represented as sequence of numbers. 

Although speech and video signals have the privilege to be represented in both continuous and 

discrete time format; under certain circumstances, they are identical. Amplitudes also show 

discrete characteristics. Perfect example of this is a digital signal; whose amplitude and time 

both are discrete. 

 

The figure above depicts a discrete signal’s discrete amplitude characteristic over a period of 

time. Mathematically, these types of signals can be formularized as; 

x={x[n]}, −∞<n<∞   

Where, n is an integer. 

It is a sequence of numbers x, where nth number in the sequence is represented as x[n]. 

Basic DT Signals 

Let us see how the basic signals can be represented in Discrete Time Domain. 
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Unit Impulse Sequence 

It is denoted as δ(n) in discrete time domain and can be defined as; 

 

 

Unit Step Signal 

Discrete time unit step signal is defined as; 

 

 

 

The figure above shows the graphical representation of a discrete step function. 

Unit Ramp Function 

A discrete unit ramp function can be defined as − 

 

 

The figure given above shows the graphical representation of a discrete ramp signal. 
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Sinusoidal Signal 

All continuous-time signals are periodic. The discrete-time sinusoidal sequences may or may not 

be periodic. They depend on the value of ω. For a discrete time signal to be periodic, the angular 

frequency ω must be a rational multiple of 2π. 

 

A discrete sinusoidal signal is shown in the figure above. 

Discrete form of a sinusoidal signal can be represented in the format − 

x(n)=Asin(ωn+ϕ) 

Here A,ω and φ have their usual meaning and n is the integer. Time period of the discrete 

sinusoidal signal is given by − 

 

Where, N and m are integers. 

Classification of DT Signals 

Discrete time signals can be classified according to the conditions or operations on the signals. 

 

Even and Odd Signals 

Even Signal 

A signal is said to be even or symmetric if it satisfies the following condition; 

x(−n) = x(n) 
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Here, we can see that x(-1) = x(1), x(-2) = x(2) and x(-n) = x(n). Thus, it is an even signal. 

Odd Signal 

A signal is said to be odd if it satisfies the following condition; 

x(−n) = −x(n) 

 

From the figure, we can see that x(1) = -x(-1), x(2) = -x(2) and x(n) = -x(-n). Hence, it is an odd as 

well as anti-symmetric signal. 

Periodic and Non-Periodic Signals 

A discrete time signal is periodic if and only if, it satisfies the following condition − 

x(n+N)=x(n) 

Here, x(n) signal repeats itself after N period. This can be best understood by considering a 

cosine signal − 

x(n)=Acos(2πf0n+θ) 

x(n+N)=Acos(2πf0(n+N)+θ)=Acos(2πf0n+2πf0N+θ) 

For the signal to become periodic, following condition should be satisfied; 

x(n+N)=x(n) 

⇒Acos(2πf0n+2πf0N+θ)=Acos(2πf0n+θ) 

i.e. 2πf0N is an integral multiple of 2π 
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2πf0N=2πK 

⇒    N=K/f0 

Frequencies of discrete sinusoidal signals are separated by integral multiple of 2π. 

Energy and Power Signals 

Energy Signal 

Energy of a discrete time signal is denoted as E. Mathematically, it can be written as; 

 

If each individual values of x(n) are squared and added, we get the energy signal. Here x(n) is the 

energy signal and its energy is finite over time i.e 0<E<∞ 

Power Signal 

Average power of a discrete signal is represented as P. Mathematically, this can be written as; 

 

Here, power is finite i.e. 0<P<∞. However, there are some signals, which belong to neither 

energy nor power type signal. 

 

Operations on Signals 

 The basic signal operations which manipulate the signal characteristics by acting on the 

independent variable(s) which are used to represent them. This means that instead of 

performing operations like addition, subtraction, and multiplication between signals, we will 

perform them on the independent variable. In our case, this variable is time (t). 

 1. Time Shifting 

Suppose that we have a signal x(n) and we define a new signal by adding/subtracting a finite 

time value to/from it. We now have a new signal, y(n). The mathematical expression for this 

would be x(n± n0). 

Graphically, this kind of signal operation results in a positive or negative “shift” of the signal 

along its time axis. However, note that while doing so, none of its characteristics are altered. 

This means that the time-shifting operation results in the change of just the positioning of the 

signal without affecting its amplitude or span. 
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Let's consider the examples of the signals in the following figures in order to gain better insight 

into the above information. 

  

 

Figure 1. Original signal and its time-delayed version 

  

Here the original signal, x[n], spans from n = -3 to n = 3 and has the values -2, 0, 1, -3, 2, -1, and 

3, as shown in Figure 1(a). 

Time-Delayed Signals 

Suppose that we want to move this signal right by three units (i.e., we want a new signal whose 

amplitudes are the same but are shifted right three times). 

This means that we desire our output signal y[n] to span from n = 0to n = 6. Such a signal is 

shown as Figure 1(b) and can be mathematically written as y[n] = x[n-3]. 

This kind of signal is referred to as time-delayed because we have made the signal arrive three 

units late. 

Time-Advanced Signals 

On the other hand, let's say that we want the same signal to arrive early. Consider a case where 

we want our output signal to be advanced by, say, two units. This objective can be accomplished 

by shifting the signal to the left by two time units, i.e., y[n] = x[n+2]. 

The corresponding input and output signals are shown in Figure 2(a) and 2(b), respectively. Our 

output signal has the same values as the original signal but spans from n = -5 to n = 1 instead 

of n = -3 to n = 3. The signal shown in Figure 2(b) is aptly referred to as a time-advanced signal. 
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Figure 2. Original signal and its time-advanced version 

For both of the above examples, note that the time-shifting operation performed over the 

signals affects not the amplitudes themselves but rather the amplitudes with respect to the time 

axis. We have used discrete-time signals in these examples, but the same applies to continuous-

time signals.  

Practical Applications 

Time-shifting is an important operation that is used in many signal-processing applications. For 

example, a time-delayed version of the signal is used when performing autocorrelation. (You can 

learn more about autocorrelation in my previous article, Understanding Correlation.) 

Another field that involves the concept of time delay is artificial intelligence, such as in systems 

that use Time Delay Neural Networks. 

2. Time Scaling 

Now that we understand more about performing addition and subtraction on the independent 

variable representing the signal, we'll move on to multiplication. 

For this, let's consider our input signal to be a continuous-time signal x(t) as shown by the red 

curve in Figure 3. 

Now suppose that we multiply the independent variable (t) by a number greater than one. That 

is, let's make t in the signal into, say, 2t. The resultant signal will be the one shown by the blue 

curve in Figure 3. 

From the figure, it's clear that the time-scaled signal is contracted with respect to the original 

one. For example, we can see that the value of the original signal present at t = -3 is present 

at t = -1.5 and those at t= -2 and at t = -1 are found at t = -1 and at t = -0.5 (shown by green 

dotted-line curved arrows in the figure). 

This means that, if we multiply the time variable by a factor of 2, then we will get our output 

signal contracted by a factor of 2 along the time axis. Thus, it can be concluded that the 

https://www.allaboutcircuits.com/technical-articles/understanding-correlation/
https://en.wikipedia.org/wiki/Time_delay_neural_network
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multiplication of the signal by a factor of n leads to the compression of the signal by an 

equivalent factor. 

  

 

Figure 3. Original signal with its time-scaled versions 

  

Let's check it out. 

For this, let's consider our signal to be the same as the one in Figure 3 (the red curve in the 

figure). Now let's multiply its time-variable t by ½ instead of 2. The resultant signal is shown by 

the blue curve in Figure 3(b). You can see that, in this time-scaled signal indicated by the green 

dotted-line arrows in Figure 3(b), we have the values of the original signal present at the time 

instants t = 1, 2, and 3 to be found at t = 2, 4, and 6. 

This means that our time-scaled signal is a stretched-by-a-factor-of-n version of the original 

signal. So the answer to the question posed above is "yes." 

Practical Applications 

Basically, when we perform time scaling, we change the rate at which the signal is sampled. 

Changing the sampling rate of a signal is employed in the field of speech processing. A particular 

example of this would be a time-scaling-algorithm-based system developed to read text to the 

visually impaired. 
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Next, the technique of interpolation is used in Geodesic applications (PDF). This is because, in 

most of these applications, one will be required to find out or predict an unknown parameter 

from a limited amount of available data. 

3. Time Reversal 

Until now, we have assumed our independent variable representing the signal to be positive. 

Why should this be the case? Can't it be negative? 

It can be negative. In fact, one can make it negative just by multiplying it by -1. This causes the 

original signal to flip along its y-axis. That is, it results in the reflection of the signal along its 

vertical axis of reference. As a result, the operation is aptly known as the time reversal or time 

reflection of the signal. 

For example, let's consider our input signal to be x[n], shown in Figure 4(a). The effect of 

substituting –n in the place of n results in the signal y[n] as shown in Figure 4(b).  

 

Figure 4. A signal with its reflection 

Analog frequency and Digital frequency 

The fundamental relation between the analog frequency, Ω , and the digital frequency, ω , is 

given by the following relation: 

 

or alternately, 

 

http://der.topo.auth.gr/dermanis/pdfs/erice.pdf
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where T is the sampling period, in sec., and fs =1/T is the sampling frequency in Hz. 

Note, however, the following interesting points: 

 • The unit of Ω is radian/sec., whereas the unit of ω is just radians. 

 

(a) 

 

(b) 

FIGURE 3.1 Analog frequency response and (b) digital frequency response 

Definition of Discrete time system 

System can be considered as a physical entity which manipulates one or more input signals 

applied to it. For example a microphone is a system which converts the input acoustic (voice or 

sound) signal into an electric signal. A system is defined mathematically as a unique operator or 

transformation that maps an input signal in to an output signal. This is defined as y(n) = T[x(n)] 

where x(n) is input signal, y(n) is output signal, T[] is transformation that characterizes the 

system behavior. 

y(n) = T [x(n)] 

 

Where, T  is the general rule or algorithm which is implemented on x(n) or the excitation to get 

the response y(n). For example, a few systems are represented as, 

y(n) = -2x(n) 

or,   y(n) = x(n-1) + x(n) + x(n+1) 
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Block Diagram representation of Discrete-time systems 

Digital Systems are represented with blocks of different elements or entities connected with 

arrows which also fulfills the purpose of showing the direction of signal flow, 

 

 

Some common elements of Discrete-time systems are:- 

Adder: It performs the addition or summation of two signals or excitation to have a response. 

An adder is represented as,   

 

Constant Multiplier:  This entity multiplies the signal with a constant integer or fraction. And is 

represented as, in this example the signal x(n) is multiplied with a constant “a” to have the 

response of the system as y(n). 

 

                                                                     

         Signal Multiplier: This element multiplies two signals to obtain one. 
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Unit-delay element: This element delays the signal by one sample i.e. the response of the 

system is the excitation of previous sample. This can element is said to have a memory which 

stores the excitation at time n-1 and recalls this excitation at the time n form the memory. This 

element is represented as, 

  

 

  

Unit-advance element: This element advances the signal by one sample i.e. the response of the 

current excitation is the excitation of future sample. Although, as we can see this element is not 

physically realizable unless the response and the excitation are already in stored or recorded 

form.                

 

Now that we have understood the basic elements of the Discrete-time systems we can now 

represent any discrete-time system with the help of block diagram. For example, 

                                 y(n) = y(n-1) + x (n-1) + 2x(n) 

  

 

The above system is an example of Discrete-time system involving the unit delay of current 

excitation and also one unit delay of the current response of the system. 

 

Classification of Discrete-time Systems 

Discrete-time systems are classified on different principles to have a better idea about a 

particular system, their behavior and ultimately to study the response of the system. 
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Relaxed system: If y(no -1) is the initial condition of a system with response y(n) and y(no -1)=0,  

then the system is said to be initially relaxed i.e. if the system has no excitation prior to no . 

Static and Dynamic systems: A system is said to be a Static discrete-time system if the response 

of the system depends at most on the current or present excitation and not on the past or 

future excitation. If there is any other scenario then the system is said to be a Dynamic discrete-

time system. The static systems are also said to be memory-less systems and on the other hand 

dynamic systems have either finite or infinite memory depending on the nature of the system. 

Examples below will clear any arising doubts regarding static and dynamic systems.            

 

 

The last example is the case of in-finite memory and the others are specified about their type 

depending on their characteristics. 

Time-variant and Time-invariant system: A discrete-time system is said to be time invariant if 

the input-output characteristics do not change with time, i.e. if the excitation is delayed by k 

units then the response of the system is also delayed by k units. Let there be a system, 

                                                   x(n)        ---->    y(n)        ∀ x(n) 

Then the relaxed system T is time-invariant if and only if, 

                                                  x(n-k)      ---->   y(n-k)  ∀ x(n) and k. 

Otherwise, the system is said to be time-variant system if it does not follows the above specified 

set of rules. For example, 

                                              y(n) = ax(n)                                  { time-invariant } 

                                           y(n) = x(n) + x(n-3)                         { time-invariant } 

                                          y(n) = nx(n)                                      { time-variant } 

Note:- In order to check whether the system is time-invariant or time-variant the system must 

satisfy the “T[x(n-k)]=y(n-k)” condition, i.e. first delay the excitation by k units, then replace n 
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with (n-k) in the response and then equate L.H.S. and R.H.S. if they are equal then the system is 

time invariant otherwise not. For example in the last system above, 

                             L.H.S. = T[x(n-k)] =nx(n-k)           

{not (n-k)x(n-k) which is a general misconfusion} 

                         R.H.S. = y(n-k)= (n-k) x(n-k) 

So, the L.H.S. and R.H.S. are not equal hence the system is time-varient. 

Note:- What about Folder, is it a time-variant or time-invariant system, let’s see, 

                                                              y(n) = x(-n) 

                          L.H.S. =  y(n-k) = x[-(n-k)]=x(-n+k) 

                          R.H.S. = T[x(n-k)] = x(-n-k) 

Thus, R.H.S. is not equal to L.H.S. so the system is time-variant. 

Linear and non-Linear systems: A system is said to be a linear system if it follows the 

superposition principle i.e. the sum of responses (output) of weighted individual excitations 

(input) is equal to the response of sum of the weighted excitations. Pay attention to the above 

specified rule, according to the rule the following condition must be fulfilled by the system in 

order to be classified as a Linear system, 

                        If,  y1(n) = T[ ax1(n) ] 

                           y2(n) = T[ bx2(n) ] 

                  and,   y(n) = T[ax1(n) + bx2(n)] 

   Then, the system is said to be linear if , 

                           T[ ax1(n) + bx2(n)] = T[ ax1(n) ] +  T[ bx2(n) ] 
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So, if y’(n) = y’’(n) then the system is said to be linear. I the system does not fulfills this property 

then the system is a non-Linear system. For example, 

y(n) = x (n2)                                     { linear } 

y(n) = Ax(n) + B                                     {non – linear } 

y(n) = nx(n)                                              { linear } 

The explanation of the above specified examples is left as an exercise for the reader. 

 

Causal and non-Causal systems: A discrete-time system is said to be a causal system if the 

response or the output of the system at any time depends only on the present or past excitation 

or input and not on the future inputs. If the system T follows the following relation then the 

system is said to be causal otherwise it is a non-causal system. 

y(n) = F [x(n), x(n-1), x(n-2),…….] 

Where F[] is any arbitrary function. A non-causal system has its response dependent on future 

inputs also which is not physically realizable in a real-time system but can be realized in a 

recorded system. For example, 
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Stable and Unstable systems: A system is said to be stable if the bounded input produces a 

bounded output i.e. the system is BIBO stable. If, 

           

 

               

Then the system is said to be bounded system and if this is not the case then the system is 

unbounded or unstable. 

 
ANALYSIS OF DISCRETE-TIME LINEAR TIME-INVARIANT SYSTEMS 

Systems are characterized in the time domain simply by their response to a unit sample 

sequence. Any arbitrary input signal can be decomposed and represented as a weighted sum of 

unit sample sequences. 

Our motivation for the emphasis on the study of LTI systems is twofold. First there is a large 

collection of mathematical techniques that can be applied to the analysis of LTI systems. Second, 

many practical systems are either LTI systems or can be approximated by LTI systems. 

As a consequence of the linearity and time-invariance properties of the system, the 

response of the system to any arbitrary input signal can be expressed in terms of the unit 

sample response of the system. The general form of the expression that relates the unit sample 

response of the system and the arbitrary input signal to the output signal, called the convolution 

sum  

Thus we are able to determine the output of any linear, time-invariant system to any arbitrary 

input signal. 

 

 There are two basic methods for analyzing the behavior or response of a linear system to 

a given input signal. 

 The first method for analyzing the behavior of a linear system to a given input signal is 

first to decompose or resolve the input signal into a sum of elementary signals. The elementary 

signals are selected so that the response of the system to each signal component is easily 

determined. Then, using the linearity property of the system, the responses of the system to the 

elementary signals are added to obtain the total response of the system to the given input 

signal.  



18 

 

 Suppose that the input signal x( n ) is resolved into a weighted sum of elementary signal 

components { xk( n ) ) so that 

 

where the {ck} is the set of amplitudes (weighting coefficients) in the decomposition of the signal 

x(n) . Now suppose that the response of the system to the elementary signal component xk(n) is 

yk(n). Thus 

 

assuming that the system is relaxed and that the response to ckxk(n) is ckvk(n)  as a consequence 

of the scaling property of the linear system. 

Finally, the total response to the input x ( n ) is 

    

In the above equation we used the additivity property of the linear system. 

Resolution of a Discrete-Time Signal into Impulses 

Suppose we have an arbitrary signal x( n ) that we wish to resolve into a sum of unit sample 

sequences. we 

select the elementary signals xk( n) to be 

 

where k represents the delay of the unit sample sequence. To handle an arbitrary signal x( n ) 

that may have nonzero values over an infinite duration, the set of unit impulses must also be 

infinite, to encompass the infinite number of delays. 

Now suppose that we multiply the two sequences x(n) and (n - k ) . Since (n - k ) is zero 

everywhere except at n = k . where its value is unity, the result of this multiplication is another 
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sequence that is zero everywhere except at n = k. where its value is x ( k ) , as illustrated in Fig. 

below. Thus 

 

 

Multiplication of a signal x( n ) with a shifted unit sample sequence. 

If we repeat this multiplication over all possible delays, - < k < , and sum all the product 

sequences, the result will be a sequence equal to the sequence x( n ) , that is, 
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Example . 

Consider the special case of a finite-duration sequence given as 

 

Resolve the sequence x ( n ) into a sum of weighted impulse sequences. 

Solution: Since the sequence x ( n ) is nonzero for the time instants n = -1, 0. 2, we 

need three impulses at delays k = - 1. 0, 2. Following (2.3.10) we find that 

 

Response of LTI Systems to Arbitrary Inputs: The Convolution Sum 

 we denote the response y( n,k ) of the system to the input unit sample sequence at n= k 

by the special symbol h(n. k), - < k < . That is, 

 

n is the time index and k is a parameter showing the location of the input impulse. If the impulse 

at the input is scaled by an amount ckx(k ) the response of the system is the correspondingly 

scaled output, that is, 

 

Finally, if the input is the arbitrary signal x(n) that is expressed as a sum of 

weighted impulses. that is. 

 

Then the response of the system to x(n) is the corresponding sum of weighted outputs, 

that is. 
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The above equation  follows from the superposition property of linear systems, and is 

known as the superposition summation. 

 In the above equation we used the linearity property of the system bur nor its time  invariance 

property. 

Then by the time-invariance property, the response of the system to the delayed unit 

sample sequence (n - k ) is 

 

 

The formula above gives the response y(n) of the LTI system as a function of the input signal x( n 

) and the unit sample (impulse) response h(n) is called a convolution sum. 

The process of computing the convolution between x( k ) and h(k) involves the following 

four steps. 

1. Folding. Fold h(k) about k = 0 to obtain h (- k). 

2. Shifting. Shift h (- k) by no to the right (left) if no is positive (negative), to obtain h(no - k ) . 

3, Multiplication. Multiply x( k ) by h(no - k) to obtain the product sequence  

vno(k) = x(k)h(no - k). 

4. Summation. Sum all the values of the product sequence vno(k)  to obtain the 

value of the output at time n = no. 

 

Example . 

The impulse response of a linear time-invariant system is 
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Determine the response of the system to the input signal 
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Filtering using Overlap-save and Overlap-add methods 
 

In many applications one of the signals of a convolution is much longer than the other. 
For instance when filtering a speech signal xL[k] of length L with a room impulse response hN[k] 
of length N ≪ L.  In order to perform the convolution various techniques have been developed 
that perform the filtering on limited portions of the signals. These portions are known as 
partitions, segments or blocks. The respective algorithms are termed as segmented or block-
based algorithms. The following section introduces two techniques for the block-based 
convolution of signals. The basic concept of these is to divide the convolution  y[k]=xL[k] * hN[k]  
into multiple convolutions operating on (overlapping) segments of the signal xL[k]. 
 

Overlap-Add Algorithm 
 

The overlap-add algorithm is based on splitting the signal xL[k] into non-overlapping 
segments xp[k] of length P. 

 

 
 

where the segments xp[k] are defined as 
 

 

 
 
 
Note that xL[k] might have to be zero-padded so that its total length is a multiple of the 

segment length P. Introducing the segmentation of xL[k] into the convolution yields 
where yp[k]=xp[k] * hN[k]. This result states that the convolution of xL[k]*hN[k]  can be split into a 
series of convolutions yp[k] operating on the samples of one segment(block) only. The length 
of yp[k] is N+P−1. The result of the overall convolution is given by summing up the results from 
the segments shifted by multiples of the segment length P. This can be interpreted as an 
overlapped superposition of the results from the segments, as illustrated in the following 
diagram.  

 

https://en.wikipedia.org/wiki/Overlap%E2%80%93add_method
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Overlap-Save Algorithm 
 

The overlap-save algorithm, also known as overlap-discard algorithm, follows a different 
strategy as the overlap-add technique introduced above. It is based on an overlapping 
segmentation of the input xL[k] and application of the periodic convolution for the individual 
segments. 

 
Lets take a closer look at the result of the periodic convolution xp[k]*hN[k], where xp[k]  

denotes a segment of length P of the input signal and hN[k] the impulse response of length N. 
The result of a linear convolution xp[k]*hN[k]   would be of length P+N−1. The result of the 
periodic convolution of period P for P>N would suffer from a circular shift (time aliasing) and 
superposition of the last N−1 samples to the beginning. Hence, the first N−1 samples are not 
equal to the result of the linear convolution. However, the remaining P−N+1 do so. 

 
This motivates to split the input signal xL[k]  into overlapping segments of length P where 

the p-th segment overlaps its preceding (p−1)-th segment by N−1 samples. 
 

 
 

 
The part of the circular convolution xp[k]*hN[k]  of one segment xp[k]  with the impulse 

response hN[k]  that is equal to the linear convolution of both is given as 
 

 

https://en.wikipedia.org/wiki/Overlap%E2%80%93save_method
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The output y[k]  is simply the concatenation of the yp[k] 
 

 
 

The overlap-save algorithm is illustrated in the following diagram. 
 

 
 

For the first segment x0[k], N−1 zeros have to be appended to the beginning of the input 

signal xL[k] for the overlapped segmentation. From the result of the periodic 

convolution xp[k]*hN[k] the first N−1 samples are discarded, the remaining P−N+1 are copied to 

the output y[k]. This is indicated by the alternative notation overlap-discard used for the 

technique 

 

Causal Linear Time-Invariant Systems 

In the case of a linear time-invariant system, causality can be translated to a condition on 

the impulse response. To determine this relationship, let us consider a linear time-invariant 

system having an output at time n = no given by the convolution formula  
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Suppose that we subdivide the sum into two sets of terms, one set involving present and past 

values of the input [i.e.. x ( n ) for n ≤ no] and one set involving future values of the input        

[i.e., x ( n ) . n > no]. Thus we obtain 

 

We observe that the terms in the first sum involve x(n0), x(no - 1 ) . . . . , which are the present 

and past values of the input signal. On the other hand, the terms in the second sum involve the 

input signal components x(no + 1), x(no +2). . . . . Now, if the output at time n = no is depend only 

on the present and past inputs, then, clearly. the impulse response of the system must satisfy 

the condition 

 

Since h(n) is the response of the relaxed linear time-invariant system to a unit impulse applied at 

n = 0, it follows that h(n) = 0 for n < 0 is both a necessary and a sufficient condition for causality. 

Hence an LTI system is causal if and only if its impulse response is zero for negative values of n. 

Since for a causal system, h(n) = 0 for n < 0. the limits on the summation of the convolution 

formula may be modified to reflect this restriction. Thus we have the two equivalent forms 

    

 

Up to this point we have treated linear and time-invariant systems that are characterized by 

their unit sample response h(n). In turn h(n) allows us to determine the output y(n) of the 

system for any given input sequence x( n ) by means of the convolution summation. 

 In the case of FIR systems, such a realization involves additions, Multiplications, and a 

finite number of memory locations. Consequently, an FIR system is readily implemented directly, 

as implied by the convolution summation. 

 If the system is IIR. however, its practical implementation as implied by convolution is 

clearly impossible. since it requires an infinite number of memory locations, multiplications, and 

additions. A question that naturally arises, then, is whether or not it is possible to realize IIR 

systems other than in the form suggested by the convolution summation. Fortunately, the 

answer is yes. 
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Recursive and Nonrecursive Discrete-Time Systems 

As indicated above, the convolution summation formula expresses the output of the linear time-

invariant system explicitly and only in terms of the input signal. 

However, this need not be the case, as is shown here. There are many systems where it is either 

necessary or desirable to express the output of the system not only in terms of the present and 

past values of the input, but also in terms of the already available past output values. The 

following problem illustrates this point. 

Suppose that we wish to compute the cumulative average of a signal x ( n ) in the interval        

0≤ k ≤ n, defined as 

 

the computation of y( n )  requires the storage of all the input samples x (k ) for 0 ≤ k ≤ n. Since n 

is increasing, our memory requirements grow linearly with time. 

Our intuition suggests, however, that y( n ) can be computed more efficiently 

by utilizing the previous output value y(n - I ) . Indeed, by a simple algebraic rearrangement , we 

obtain 

 

 

 

This is an example of a recursive system. 
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Difference Equations in DiscreteTime Systems 

Here a treatment of linear difference equations with constant coefficients and it is confined to 

first- and second-order difference equations and their solution. Higher-order difference 

equations of this type and their solution is facilitated with the Ztransform 

1-Recursive Method for Solving Difference Equations 

 In mathematics, a recursion is an expression, such as a polynomial, each term of which is 

determined by application of a formula to preceding terms. The solution of a difference 

equation is often obtained by recursive methods. An example of a recursive method is Newton’s 

method for solving non-linear equations. While recursive methods yield a desired result, they do 

not provide a closed-form solution. If a closed-form solution is desired, we can solve difference 

equations using the Method of Undetermined Coefficients, and this method is similar to the 

classical method of solving linear differential equations with constant coefficients. 

2-Method of Undetermined Coefficients 

 A second-order difference equation has the form 

 

Where a1d a2  are constants and the right side is some function of n. This differenc  equation 

expresses the output y(n) at time n as the linear combination of two previous outputs y(n-1)  

and y(n-2).  The right side of relation (A.1) is referred to as the forcing function The general 

(closed-form) solution of relation (A.1) is the same as that used for solving second-order 

differential equations. The three steps are as follows: 

 

1. Obtain the natural response (complementary solution) in terms of two arbitrary real 

constants k1 and k2 , where a1 and a2 are also real constants, that is,  

 

2. Obtain the forced response (particular solution) in terms of an arbitrary real constant k3 , that 

is,    

 

where the right side of (A.3) is chosen with reference to Table A.1. 
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3. Add the natural response (complementary solution) yc(n) and the forced response (particular 

solution) yp(n)to obtain the total solution, that is, 

   

4. Solve for k1 and k2 in (A.4) using the given initial conditions. It is important to remember that 

the constants k1 and k2 must be evaluated from the total solution of (A.4), not from the 

complementary solution yc(n). 

 

Example 1 

 Find the total solution for the second−order difference equation 

 

  

Solution: 

1. We assume that the complementary solution yc(n) has the form 

 

The homogeneous equation of (A.5) is 

   

 

Substitution of  
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into (A.7) yields 

    

Division of (A.8) by 

   

Yields 

   

The roots of (A.9) are 

    

and by substitution into (A.6) we obtain 

   

2. Since the forcing function is  

 

, we assume that the particular solution is 

    

and by substitution into (A.5), 

     

 

Division of both sides by 

     

Yields 
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Or k=1 and thus 

 

The total solution is the addition of (A.11) and (A.13), that is, 

   

 

IMPLEMENTATION OF DISCRETE-TIME SYSTEMS 

In practice, system design and implementation are usuaHy treated jointly rather than 

separately. Often, the system design is driven by the method of implementation and by 

implementation constraints, such as cost. hardware limitations, size limitations, and power 

requirements. At this point, we have not as yet developed the necessary analysis and design 

tools to treat such complex issues. However, we have developed sufficient background to 

consider some basic implementation methods for realizations of LTI systems described by linear 

constant-coefficient difference equations. 
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Structures for the Realization of Linear Time-Invariant Systems 

In this subsection we describe structures for the realization of systems described by linear 

constant-coefficient difference equations.  

As a beginning, let us consider the first-order system 

 

which is realized as in Fig. a. This realization uses separate delays (memory) for both the input 

and output signal samples and it is called a direct form I structure. 

Note that this system can be viewed as two linear time-invariant systems in cascade. 

The first is a nonrecursive, system described by the equation 

 

whereas the second is a recursive system described by the equation 

 

 

Thus if we interchange the order of the recursive and nonrecursive systems, we obtain an 

alternative structure for the realization of the system described above. The resulting system is 

shown in Fig. b. From this figyre we obtain 

the two difference equations 

 

which provide an alternative algorithm for computing the output of the system described by the 

single difference equation given first. In other words. The last two difference equations are 

equivalent to the single difference equation . 

A close observation of Fig. a,b reveals that the two delay elements contain the same input w(n) 

and hence the same output w(n-1). Consequently. these 
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two elements can be merged into one delay, as shown in Fig. c. In contrast 

 

  

to the direct form I structure, this new realization requires only one delay for the auxiliary 

quantity w(n), and hence it is more efficient in terms of memory requirements. It is called the 

direct form 11 structure and it is used extensively in practical applications. These structures can 

readily be generalized for the general linear time-invariant recursive system described by the 

difference equation 

 

Figure below illustrates the direct form I structure for this system. This structure requires M + N 

delays and N + M + 1 multiplications. It can be viewed as the cascade of a nonrecursive system 

     

and a recursive system 

 

 



34 

 

 

By reversing the order of these two systems as was previously done for the first-order system, 

we obtain the direct form I1 structure shown in Fig. below for N > M. This structure is the 

cascade of a recursive system 

 

followed by a nonrecursive system 

 

We observe that if N  M, this structure requires a number of delays equal to the order N of the 

system. However, if M > N, the required memory is specified by M. Figure above can easily by 

modified to handle this case. Thus the direct form I1 structure requires M + N + 1 multiplications 

and max(M, N} delays. Because it requires the minimum number of delays for the realization of 

the system described by given difference equation.  
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UNIT II 

CONTINUOUS TIME FOURIER SERIES (CTFS) 

x(t) is the Continuous Time Periodic signal with period is T sec , x(t) can be expressed as 

weighted sum of complex exponential signals. 

x(t) =      
      

      for all k values        1 

    = 
 

 
     

 

 
        dt   for all k   where    is fundamental frequency of signal f(t)  2 

Since frequency range of continuous time signals extended from         x(t) consisting of 

infinite number of frequency components , where spacing between successive harmonically 

related frequencies is 
 

 
  and where T is fundamental time  period . 

DISCRETE TIME FOURIER SERIES (DFS) 

Similar way discrete time period signal x(n) with period N  can be expressed as weighted sum of 

complex exponential sequences. The range of frequencies for x(n) is unique over the interval     

(0 , 2π) or (– π , + π). Consequently Fourier series representation of x(n) will contain N (finite) 

frequency components and spacing between two successive frequency components is 
  

 
 

radians. Therefore Fourier series representation of periodic sequence need only contain N of 

these complex exponentials.  

x(n) =      
 
  

 
     

       k = 0,1,……..N-1 where        are  Fourier coefficients   3 

It contains N harmonically related exponential functions. 

Derivation for      

Multiplying the equation 1 on both sides by    
  

 
    

x(n)    
  

 
   =      

 
  

 
         

       k = 0,1,……..N-1 

Summing the products on both sides from n = 0 to n = N-1 

         
  
 

  

   

   

        
 
  
 

      

   

   

   

   

 

      4 

Interchange the order of summation  
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                        5 

N    =          
  

 
     

                        6 

           
 

 
          

  

 
     

                                        7 

               
  
 

  

   

   

                                                              

      
  
  

    Represents amplitude and phase associate with frequency component 

             

Fourier coefficients form a periodic sequence when extended outside of the range k = 0, 1, 2, 

3…..N-1.Thus spectrum of the periodic signal also periodic sequence with period N.  In frequency 

domain to covering the fundamental range 0     
  

 
      for                  in 

contrast, the frequency range         corresponds to  
 

 
   

 

 
 which creates 

incontinence when N is odd. Clearly if we use sampling frequency                 

                corresponds to the frequency range 0 ≤ F <  . 

Power Density Spectrum of Periodic Signal 

Average power of discrete time signals with period N is defined as  

     
 

 
          

   

   

                                                                                                                     

              = 
 

 
             

  

 
     

   
   
    

Interchange the order of two summations 

              
 

 
       

  

 
                                                                                                       

   
   
    

      =                
    

     =              
    

It shows that average power in the signal is the sum of the powers of the individual frequency 

components. The sequence       is the distribution of power as function of frequency and is 

called as power density spectrum of the period signal. 

Energy of the sequence x(n) over one period given by  
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PROPERTIES OF DFS      

Linearity    

Let us consider two periodic sequences                      , both with period equal to N 

      
   
                                                                             

      
   
          

      
   
         

                            

                                                         With period equal to N 

               
   

   

  
                         

             =                      
       

   

             =             
      

                
       

   

            = a           
      

                
      

   

           = a                 

DFS of linear combination of two sequences is equal to linear combination of DFS of individual 

sequences and all sequences are periodic with period N.  

Shifting of sequence 

x(n) is the periodic sequence with period N 
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Fourier coefficients of  periodic sequence are a periodic sequence so  

          
           

     
                              1 

          
        

       
   
    

         

Similar results applies shift in Fourier coefficients of sequence   
        

  
                  

  
       

   
            

Any shift greater than the period cannot distinguish in time domain from shorter shift. 

Shift of x(n) defined on 0 to N-1 by amount of m to right denoted by x((n-m) modulo N).This 

operation , wrapping part fall outside of region of interest around front of sequence or just 

straight translation of period extension outside of  0 to N-1 of given sequence. 

                                                      

1]  

If m=N 

                                                   Which is same as 

original sequence x (n) 

 

 Periodic convolution  

                     be the two periodic sequences of period N and its DFS are                   

respectively.  
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n-m = r + lN,                     because of  periodic property 

                         
   

   

                       

In above equation                      are periodic in m with period N and consequently 

their product. Also summation carried out only over a one period. This type convolution 

commonly referred periodic convolution.  

Product in time domain 

                     be the two periodic sequences of period N and its DFS are                   

respectively.  

                         

          
 

 
            

     
     

 

 
          

      
    

DFs of        is         =      
            

  
 

       

        
 

 
   

   

   

  
 

 
    
 

         
        

   

   

   

   

                       

   
        

   

   

  
                 
                          

 

  

                                 
 

        
 

 
                 
   

   

                       

Discrete Time Fourier Transform (DTFT)  

Fourier Transform of an aperiodic Discrete Time sequence x(n) represented by function of 

complex exponential  sequence X (   ) where   is a frequency variable. 

DTFT of x(n) is                
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DTFT maps time domain sequence in continuous function of sequence  

RHS equation shows Fourier series representation of period function X (   ) therefore  

      
 

  
   

  

  

                              

 Finite energy signal have continuous spectrum  

 

 

Frequency domain sampling   

Let      be the nonperiodic discrete time sequence and its Fourier transform      is periodic 

function of   with period is    radians.  

             
          

Sample the periodic function X ( ) and spacing between two successive samples is δ  = 
  

 
 

where N is number of samples in interval          

K th sample at     
  

 
   where k = 0,1,2,3 ,………..N-1 

  
   

 
    =        

            where k = 0,1,2, ……..N-1 

Summation can be divided into infinite number of summations and each summation contain N 

terms only 

  
   

 
              

  

    

           

   

   

            

    

   

     

             

      

    

       

                             
    

  
          

Change Index of inner summation from n to       

               =             
   

  
               

Change order of summation  

             
    

   
              

=   
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X(
   

 
       

   
          

   

 
         

  
   

 
       

   

   

       
   
 

   

                                                                                 

          
   
     

   

 
   Where                              

    
 

 
   

   

   

       
   
 

   

Comparing  

  
   

 
         

 

      
 

 
    

   

 
   

   

   

  
   
 

   

X(
   

 
       

   
          

   

 
        

This indicates reconstruction of       from samples of spectrum X ( ) but it does not implies 

that we can recover x(n) from the samples. 

x(n) is obtained from       if there is no aliasing , one period of periodic signal       is x(n)  

 x(n) =        for           

          = 0 other wise  

So that x(n) is recovered from       without ambiguity  

If period of periodic sequence       is less than length of x(n) , it is not possible recover x(n) 

from       due to time domain aliasing . 

 

Interpolation formula  

Spectrum of X( ) in terms of samples X(
   

 
     where k = 0,1,2,--------------N-1 
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                    Interpolation shifted by 
   

 
  in frequency  

        
   

 
    

   

   

     
   

 
             

Phase shift reflects the signal x(n) is a causal  , finite duration sequence of length N  

Interpolation formula in above expression gives samples values 

  
   

 
          

   

 
                          weighted sum of the original spectral 

samples. 

 

The Discrete Fourier Transform (DFT) 

With frequency domain sampling of aperiodic finite energy sequence, the equally spaced 

samples   
   

 
   for k = 0,1,2,3,………N-1 , do not uniquely represent original sequence x(n) 

when x(n) has infinite duration instead , the frequency samples   
   

 
   correspond to periodic 

sequence       of period N, where       periodic extension of x(n)  

               

    

    

 

When x(n) is finite duration of length L ≤ N , then        is periodic repetition of x(n)  

       
                      
                           

  

X(n)  =                                                                           from 

                 . 
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By adding N-L zeros to original sequence, it becomes N point sequence this operation known as 

zero padding and it does not provide additional information. 

Fourier transform of finite length sequence x(n)  given by  

                                    
     

Sample the      at equally spaced frequencies samples 

    
   

 
                                              

  
   

 
                

   

 
                                 

    Since x (n) = 0 for 

 N ≥L this is called DFT of sequence x(n) 

To recover the x(n) from frequency samples X(k)  

     
 

 
       

   
 

                                                              

   

   

 

                      
   
  

DFT:              
                                                       

    

IDFT:      
 

 
       

                                                
    

Relationship to the Z transform 

              

 

     

 

ROC includes in unit circle, if      sampled N equally spaced samples on the unit circle  

     
    

  where k = 0,1,2 ………N-1 

      
   

    
 

        
      

 

 

     

 

This is identical to fourier transform      evaluated at the N equally spaced frequencies 

   
  

 
   where k =0,1,2, …….N-1 

Relationship between              
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       Fourier transform of finite duration sequence 

Properties of DFT 

Periodicity: 

    
           
               

                              

                                

Above condition satisfies the periodicity  

According to definition of DFT  

              
                                                            

   

   

 

                            
   
 

             

   

   

 

                         
                                   

   Because            

                  

                          

Linearity  

Let us consider two N point sequences say 

                                            DFTs                 respectively  
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a               
   
   a                 

Where a and b are any real or complex valued constants.  

Note: If duration of                is not equal say     and     respectively Then duration of 

linear combination of two sequences is N = max (    ,    ). 

Circular symmetry: 

Let us Consider finite duration sequence      of length     

           Periodic extension of      with period N 

                                               
      

Shifted version of periodic sequence is   
              

Shifted version finite duration sequence              = one period of periodic sequence 

  
     in the range of        .  

       
     

                   

                   
   

      Does not corresponds to linear shift of original sequence         fact both sequences are 

confined to the interval of        .it observed that shifting of periodic sequence and 

examining the interval          as a sample leaves the interval at one end it enters the 

other end. Thus circular shift of an N point sequence is equivalent to a linear shift of its periodic 

extension and vice versa. Circular shift of       can be represented by index modulo N. 

                        

Counter clock wise direction has been selected as  positive and clock wise direction selected  as 

negative. 

 Circularly even symmetric N point sequence about the point zero on the circle. 

             

Circularly odd symmetric N point sequence about the point zero on the circle 
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Time reversal: an N point sequence is attained by reversing its samples about the point zero on 

the circle. Time reversal is equivalent to plotting the      in clock wise direction on the circle. 

                               

For periodic sequences  

Even :                        

Odd:                         

If periodic sequence is complex valued 

Conjugate even:          
       

Conjugate odd:           
       

Decomposition of       

                     

       = 
 

 
         

       

       
 

 
         

        

Symmetry properties  

Let us assume that N-point sequence x(n) and its DFT X(k) are both complex valued then the 

sequences are  expressed as  follows 

                                

                                

              
   
 

                              

   

   

 

                                             
  

 
         

  

 
      

   

   

 

Comparing real and imaginary terms on both sides  
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Real valued sequences  

If x(n) is real valued sequence  

             
   
 

                              

   

   

 

                
   
 

          

   

   

 

                            
   
 

        
 

   

   

 

                        

             
   
 

                              

   

   

 

                  
   
 

      

   

   

 

 

 

                          
   
 

      

   

   

 

                       

If x (n) is real and even  

                        

x(n) is real and even then         and          

               
  

 
    

 
      
                            

)      
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if x(n) is real and odd 

               

        

                 
  

 
    

 
      
                            

       
 

 
         

  

 
    

 
      
                            

Pure imaginary sequences 

            

                 
  

 
    

 
      
    odd 

                 
  

 
    

 
      
     even  

                                                             

                                   

 

Multiplication of two DFTs and circular convolution 

Let us consider two finite duration sequences of length N say                             

          are                 respectively, if we multiply two DFTs result is a DFT say 

     of a sequence                  N. 

                  

                          
 

 
                

     
   

 
   

  
 

 
          

   

   

   
   
 

            

   

   

   
   
 

     

   

   

  
   
 

   

   
 

 
               

   
        

   

 
             

         
    

   
   
 

          
                                 
                                                               

   

   

   

 

                                        
     

Multiplication of two DFT sequences results DFT of circular convolution of two time domain 

sequences.  
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Note: if length of two sequences are not equal in such case N = Max of two sequences and apply 

zero padding to smaller sequence. 

Time reversal property 

Let us consider N point sequence x (n) and it time reversal                  

                         
      

   

 
   

Index N-n changed to m 

                                
      

   

 
       

                                 
     

   

 
   

                                
      

   

 
        

From definition of DFT 

                                                    for 0 ≤ k ≤ N-1 

                 Hence reversing N point sequence in time is equivalent to reversing the DFT values. 

Circular shift operation: 

X(k) is N point DFT of sequence x(n) of duration N  

                             
   
      

   

 
   

             
   
      

   

 
              

      
   

 
   

But         
 

          

          
   
      

   

 
                

      
   

 
     if m = N+n-l 

            
   
      

   

 
            

        
   

 
          

       

   

   

   
   
 

   

If n-l = m    then           
      

   

 
        

 

                            
      

   

 
               

        
   

 
        

                                  =          
      

   

 
        =     
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Circular shifting in time domain results, multiplication of DFT of sequence x(n) with 

   
   

 
    similarly this is dual to  Circular shifting in frequency domain results, multiplication of 

sequence x(n) with    
   

 
  . 

Circular correlation  

X(k) and Y(k) are N point DFTs of x(n) and y(n) respectively  

DFT of correlation of two sequences x(n) and y(n) is given by    (l)  

               

   

   

        

   (l) =               similar to circular convolution 

                         

Multiplication of two sequences 

                                                                                   

                   
 

 
              

Parseval’s theorem  

                   
           

  If l=0 

                    
         

       
 

 
 

   

   

          
   
 

   

       
 

 
           

   

   

    
   
 

   

   (0) =        
 

 
              

     

Special case of parseaval’s x(n) = y(n) 

        
 

 
     

          

Energy of finite duration sequences x(n) in terms of frequency components  

Linear convolution using DFTs  

Let us consider finite duration sequence x(n) 0f length L which excites the Discrete time system  

having impulse response h(n) of duration M without loss generality, let  



52 

 

                              

                             

y(n) is response of x(n) and it convolution of sum of x(n) and h(n)  

                  

   

   

 

Duration of y(n) is          

Frequency domain representation of y(n) is Y( ) = X(    ( )              

If y(n) is to be uniquely represented in frequency domain by samples of its spectrum Y( ) at set 

of discrete frequencies number of distinct samples must equal or exceed N = L+M-1. Therefore 

DFT size N  L+M-1.is required to represent Y(n) in frequency domain. 

Y( ) at    
    

 
= X(    ( ) at     

    

 
        

    

 
             

    

 
 

          
    

 
                 

    

 
 

X(k) and H(k) are N point DFTs of corresponding sequences x(n) and h(n) respectively of same 

duration of Y(k) . if lengths of x(n) and h(n) have duration less than N , pad zeros these 

sequences with zero s increase their length to N this increase in size does not alter their spectra 

X( ) and H( ) . However by sampling their spectra at N equally spaced samples , increase 

number of samples that represent these sequences in the frequency domain beyond the 

minimum number. 

Y(k) = X(k) H(k) thus  

N point circular convolution of x (n) and h(n) must be equal to linear convolution of x(n) and 

h(n). Thus zero padding with the DFT can be used to perform linear filtering. 

Efficient computation of DFT 

To compute the DFT sequence X(k) of N complex valued numbers given another sequence x(n) 

of  duration N according to formula  

              
           

   

   

      
   
 

                               

      
 

 
        

                            

   

   

 

For each value of k direct computation of      involves N complex multiplications (4N real 

multiplications) and N-1 complex additions (4N-2 real additions) 
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To evaluate all values of k from 0 to N-1 direct computation of      involves    complex 

multiplications( 4                      ) and N(N-1) complex additions( N(4N-2) ) real 

additions. 

Direct computation of N point DFT is basically inefficient because it does not exploit the 

symmetry and periodic properties of the phase factor     

Direct computation of DFT  

If x(n) is complex valued sequence , N point DFT sequence may be expressed as  

                  
  

 
                

  

 
      

 

   

   

 

                    
  

 
               

  

 
     

 
   
   ] 

Direct computation of DFT requires  

1. 2   evaluations of trigonometric functions 

2. 4   real multiplications 

3. 4N(N-1) real additions 

4. A number of indexing and addressing  

Operations 2 and 3 results in the DFT values               . The 3 and 4 operations are 

necessary to fetch the data x(n) and the phase factors and to store the results, 

 

Periodicity Property 

  
     

   
 

  
       

         
  

     
    
       

  
        

    

Symmetry Property  

  
  

 

    
     

  =     .    
    

  

 = -  
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Radix – 2 FFT algorithms 

By adopting the divide – conquer approach for efficient computation of N point DFT is based on 

the decomposition of an N point DFT into successively smaller      DFTs. this basic approach 

leads to a family of computationally efficient algorithm known as collectively as FFT algorithms . 

If N can be  factorized as product of two integers, that is assumption is that N is not a prime 

number is not restrictive since we can pad any sequence with zeros to ensure a factorization of 

form N= L M 

 N point sequence decompose into L number of M point sequences  

If N factorized as N =                     

                       = r 

 

      this indicate size of DFT is r where number r is called radix r FFT algorithm 

If r = 2 radix 2 FFT algorithms 

1. Decimation in time (DIT) FFT algorithms. 

2. Decimation in frequency (DIF) FFT algorithms. 

DIT - FFT algorithms 

To   decompose N point DFT into successively smaller and smaller number of DFT computations. 

In this process we exploit both periodicity and symmetry property of complex exponential. 

Algorithm in which the decomposition is based on decomposition the sequence x (n) into 

successively smaller subsequences are called   decimation in time algorithm. 

N is integer power of 2, N =     

In this approach decomposing the N point DFT sequence into two N/2 DFT point sequences, 

then decomposing N/2 point sequences into two N/4 point DFT sequences and continuing until 

two point DFT sequence. 
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Let x(n) is decomposed into two sequences length N/2 one composed of even index value of x(n)  

and other composed of odd indexed value of x(n).   

Input sequence: x (0), x(1) , …………x(N/2 – 1) …………x(N-1) 

Even index sequence: x (0) , x(2),x(4)     …………………… x(N-2) 

Odd index sequence: x (1), x (3), x (5),   ………………….    x (N-1) 

N point DFT given by  
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G (k) and H (k) are periodic in k with period N/2  

G (k) = G (k + N/2): H (k) = H( k + N/2  ) 

N point DFT X (k) is computed by combining of two N/2 point DFTs G (k) and H(k)  

Computation involves for N= 8  

Number of computations is required to compute two N/2 point DFTs which intern requires 

2       complex multiplications and approximately 2       complex additions. Then two N/2 

point are combined, requiring N complex multiplications corresponding to multiplying the 

second term by    
  and then N complex additions corresponding to adding that product to the 

first term. 

For all values of k requires N + 2       complex multiplications and additions. It easy to verify 

that for N > 2, N + 2       will be less than    

 N + 2       = 8 + 16 = 24;         

Let us now consider computing each of N/2 point DFTs by breaking each sum into two N/4 point 

DFTs which would be combined to yield the N/2 point DFTs.  
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N/2 point DFT G (k) is computed by combining of two N/4 point DFTs A (k) and B(k)  

Similarly  

               
 

        
             

 

     

 
 
  

   

 
 
  

   

 

             
         

 

N/2 point DFT H (k) is computed by combining of two N/4 point DFTs C (k) and D (k)  

When N/2 point DFTs are decomposed into N/4 point DFTs then factor of    

               N/2 + 2       so over all computation require 2N + 4       complex 

multiplications and complex additions. Further decomposing N/4 point DFT in to N/8 point DFTs 

and continue until left with two point DFT. In DIT FFT algorithm, input data is shuffled and 

output data normal order.  If N =    this can be at most         times. So that after carrying 

out this decomposition as many times as possible number of complex multiplications and 

additions is equal to N      .  
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In place computation  

The signal flow describes an algorithm by separating the original sequence into the even 

numbered and odd numbered points and then continuing to create smaller and smaller 

subsequences in the same the way. In addition to describing an efficient procedure for 

computing the DFT also suggests useful way of storing the original data and storing results of 

computation in the intermediate arrays.    

According to signal flow graph, each stage of computation takes a set of N complex numbers and 

transforms them into another set of N complex numbers. This process repeated         

times resulting computation of DFT. when we are going to implement computations we need to 

use two arrays of storage registers , one for array being computed and one for the data being 

used in the computation. One set of storage registers would contain the input data and second 

set of storage registers would contain the computed results for the first stage. While validity of 

fig in not tied to order in which input data are stored, let us order set of complex numbers in the 

same order that they appear in fig  

         Input array and         as output array for (m+1)st stage computation  

The basic computation in signal flow graph referred to as   butterfly computation 
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Using above equations number complex multiplications reduced by factor of 2  

Number of butterflies required per stage is N/2 

Total number of complex multiplications 
 

  
       

 

P, q and r vary from stage to stage in manner such that complex numbers in locations p,q  of 

mth array are required to compute the elements p and q of the (m+1)st array.  Thus only one 

complex array of N storage registers is physically necessary to implement the complete 

computation if          and         are stored in same registers as       and       

respectively this kind of computation is commonly referred as in place computation, since it has 

advantage that as a new array is computed the results can be stored in the same storage 

locations as original array. signal flow graph represent an in place computation is tied to the fact 

that associate nodes in the flow graph that are on the same horizontal line with the same 

storage location and that computation between two arrays consists of butterfly computation in 
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which the input nodes and output nodes are horizontal adjacent. Input data stored in no 

sequential order in which the input data are stored is in bit reversal order. If (      ) is binary 

representation of index of sequence x(n) then the sequence value x(      ) is stored in the 

array position   (      )  

 Bit reversal order necessary for in place computation ordering of the sequence x (n) in such as 

manner that  the DFT computation is decomposed into successively smaller DFT computations. It 

is a process to decompose input sequence x(n) divided into   even numbered samples and odd 

numbered samples,  with even numbered samples occurring in the top half and odd number 

samples occurring bottom half . Such separation of data carried out by examining the least 

significant but    in the index. If LSB is zero, the sequence value corresponds to an even 

numbered sample and therefore will appear in the top half and if LSB is one , the sequence value 

corresponds to odd numbered sequence and will appear in the bottom half the array. Next even 

and odd subsequences are each sorted in their even and odd parts and this can be done by 

examining the second least significant bit in the data index. in second LSB is 0 the sub sequence 

value correspond s to even numbered sample and therefore will appear top half , if second LSB 

is one the sub sequence value corresponds to odd numbered sample and will appear bottom 

half,. This process repeated until N subsequences of length 1 are obtained. This sorting even and 

odd indexed subsequences is shown in fig .   

Decimation in Frequency (DIF) FFT 

Output sequence X (k) into smaller and smaller number of sequences in the same manner as 

DIT, these classes of FFTs based on the procedure referred to as decimation in frequency (DIF). 

To derive the DIF FFT for N is always power of 2, we can first divide the input sequence into the 

first half and the last half of the points.  

Input sequence: x (0), x(1) , …………x(N/2 – 1),  x(N/2 ) …………x(N-1) 

First half sequence: x (0) , x(1),x(2)     …………………… x(
 

 
   ) 

Second half sequence: x (
 

 
), x (

 

 
  ),    ………………….    x (N-1) 
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K is even number say k = 2r 

                  
 

 
      

         

 
 
  

   

 

                  
 

 
      

 

                            
 

 
   

 
 
  

   

 

K is odd number say k = 2r+1 
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N/2 point DFT can be computed by computing the even numbered and odd numbered output 

points for those DFTs separately .similar way, N/4 point DFT can be computed by computing the 

even numbered and odd numbered output points for those DFTs separately. This process will 

continue until two point DFT. 

G (k) =      
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K is even  
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K is odd that is k = 2l+1 
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A(k) = G(2l)          B(k) = G(2l+1) 

Similarly  
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C(k) = G(2l)          D(k) = G(2l+1) 
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DIF FFT algorithm requires 
 

  
      complex multiplications                              

and input sequence is normal order and output sequence if shuffled order. 

Butterfly computations  

                      

                         
  

Computation of inverse DFT 

      
 

 
        

                            

   

   

 

Comparing to DFT computational procedure remains same expect that twiddle factors are 

negative power of    and output must be scaled by 1/N therefore, an inverse Fast Fourier 

Transform (IFFT) flow diagram can be obtained from FFT flow diagram by replacing the x(n) s by 

X(k) , scaling input data by 1/N a per stage factor of ½ when N is power of 2 and changing the 

exponents of      negative values . 
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UNIT III 

Structure of IIR Filters 

 

Analog Filters: 

 

Analog and digital filters 

In signal processing, the function of a filter is to remove unwanted parts of the signal, such as 

random noise, or to extract useful parts of the signal, such as the components lying within a 

certain frequency range. The following block diagram illustrates the basic idea. 

 

 

      

 

There are two main kinds of filter, analog and digital. They are quite different in their physical 

makeup and in how they work. An analog filter uses analog electronic circuits made up from 

components such as resistors, capacitors and opamps to produce the required filtering effect. 

Such filter circuits are widely used in such applications as noise reduction, video signal 

enhancement, graphic equalizers in hi-fi systems, and many other areas. There are well-

established standard techniques for designing an analog filter circuit for a given requirement. 

At all stages, the signal being filtered is an electrical voltage or current which is the direct 

analogue of the physical quantity (e.g. a sound or video signal or transducer output) involved. 

A digital filter uses a digital processor to perform numerical calculations on sampled values of 

the signal. The processor may be a general-purpose computer such as a PC, or a specialized DSP 

(Digital Signal Processor) chip. 
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The analog input signal must first be sampled and digitized using an ADC (analog to digital 

converter). The resulting binary numbers, representing successive sampled values of the input 

signal, are transferred to the processor, which carries out numerical calculations on them. These 

calculations typically involve multiplying the input values by constants and adding the products 

together. If necessary, the results of these calculations, which now represent sampled values of 

the filtered signal, are output through a DAC (digital to analog converter) to convert the signal 

back to analog form. 

Note that in a digital filter, the signal is represented by a sequence of numbers, rather than a 

voltage or current. 

The following diagram shows the basic setup of such a system. 
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Advantages of using digital filters 

The following list gives some of the main advantages of digital over analog filters. 

1. A digital filter is programmable, i.e. its operation is determined by a program stored in the 

processor's memory. This means the digital filter can easily be changed without affecting the 

circuitry (hardware). 
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An analog filter can only be changed by redesigning the filter circuit. 

 

2. Digital filters are easily designed, tested and implemented on a general-purpose computer or 

workstation. 

 

3. The characteristics of analog filter circuits (particularly those containing active components) 

are subject to drift and are dependent on temperature. Digital filters do not suffer from these 

problems, and so are extremely stable with respect both to time and temperature. 

 

4. Unlike their analog counterparts, digital filters can handle low frequency signals accurately. As 

the speed of DSP technology continues to increase, digital filters are being applied to high 

frequency signals in the RF (radio frequency) domain, which in the past was the exclusive 

preserve of analog technology. 

 

5. Digital filters are very much more versatile in their ability to process signals in a variety of 

ways; this includes the ability of some types of digital filter to adapt to changes in the 

characteristics of the signal. 

 

6. Fast DSP processors can handle complex combinations of filters in parallel or cascade (series), 

making the hardware requirements relatively simple and compact in comparison with the 

equivalent analog circuitry. 

 

Operation of digital filters 

In this section, we will develop the basic theory of the operation of digital filters. This is essential 

to an understanding of how digital filters are designed and used. 

Suppose the "raw" signal which is to be digitally filtered is in the form of a voltage waveform 

described by the function 

V = x(t) 

where t is time. 

This signal is sampled at time intervals h (the sampling interval). The sampled value at time t = ih 

is 

 xi = x(ih ) 
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Thus the digital values transferred from the ADC to the processor can be represented by the 

sequence  

x0, x1 , x2 , x3 , ...  

corresponding to the values of the signal waveform at  

t = 0, h, 2h, 3h, ...  

and t = 0 is the instant at which sampling begins. 

At time t = nh (where n is some positive integer), the values available to the processor, stored in 

memory, are 

   x0, x1 , x2 , x3 , ... xn 

 

Note that the sampled values xn+1, xn+2 etc. are not available, as they haven't happened yet! 

The digital output from the processor to the DAC consists of the sequence of values 

y0 , y1, y2 , y3 , ... yn  

In general, the value of yn is calculated from the values x0, x1 , x2 , x3 , .. xn. The way in which the 

y's are calculated from the x's determines the filtering action of the digital filter. 
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Examples of simple digital filters 

The following examples illustrate the essential features of digital filters. 

1. Unity gain filter: 

 

Each output value yn is exactly the same as the corresponding input value xn: 

    

This is a trivial case in which the filter has no effect on the signal. 

2. Simple gain filter: 
y = Kx n  

where K = constant. 

This simply applies a gain factor K to each input value. 

K > 1 makes the filter an amplifier, while 0 < K < 1 makes it an attenuator. K < 0 corresponds to 

an inverting amplifier. Example (1) above is simply the special case where K = 1. 

3. Pure delay filter: 

yn = x n -1 

The output value at time t = nh is simply the input at time t = (n-1)h, i.e. the signal is delayed by 

time h: 

     

Note that as sampling is assumed to commence at t = 0, the input value x-1 at t = -h is 

undefined. It is usual to take this (and any other values of x prior to t = 0) as zero. 

4. Two-term difference filter: 

yn = xn - x n -1 

The output value at t = nh is equal to the difference between the current input xn and the 

previous input xn-1: 
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i.e. the output is the change in the input over the most recent sampling interval h. The effect of 

this filter is similar to that of an analog differentiator circuit. 

5. Two-term average filter: 

    

The output is the average (arithmetic mean) of the current and previous input: 

    

This is a simple type of low pass filter as it tends to smooth out high-frequency variations in a 

signal. 

 

6. Three-term average filter: 

   

This is similar to the previous example, with the average being taken of the current and two 

previous inputs: 
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As before, x-1 and x-2 are taken to be zero. 

7. Central difference filter: 

    

This is similar in its effect to example (4). The output is equal to half the change in the input 

signal over the previous two sampling intervals: 

    

Order of a digital filter 

The order of a digital filter is the number of previous inputs (stored in the processor's memory) 

used to calculate the current output. 

Thus: 

1. Examples (1) and (2) above are zero-order filters, as the current output yn depends only on 

the current input xn and not on any previous inputs. 

2. Examples (3), (4) and (5) are all of first order, as one previous input (xn-1) is required to 

calculate yn. (Note that the filter of example (3) is classed as first-order because it uses one 

previous input, even though the current input is not used). 

3. In examples (6) and (7), two previous inputs (xn-1 and xn-2) are needed, so these are 
second-order filters.Filters may be of any order from zero upwards. 
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Digital filter coefficients 

All of the digital filter examples given above can be written in the following general forms: 

Zero order: yn = a0 x n  

First order: yn = a0 x n+ a1 x n-1 

Second order: yn = a0 xn + a1 xn-1 + a 2xn-2  

Similar expressions can be developed for filters of any order. 

The constants a0, a1, a2, ... appearing in these expressions are called the filter coefficients. It is 

the values of these coefficients that determine the characteristics of a particular filter. 

 

The following table gives the values of the coefficients of each of the filters given as 

examples above. 

 

 

 Recursive and non-recursive filters 

For all the examples of digital filters discussed so far, the current output (yn) is calculated solely 

from the current and previous input values (xn, xn-1, xn-2, ...). This type of filter is said to be 

non-recursive. 

 

A recursive filter is one which in addition to input values also uses previous output values. These, 

like the previous input values, are stored in the processor's memory. 
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The word recursive literally means "running back", and refers to the fact that previously-

calculated output values go back into the calculation of the latest output. The expression for a 

recursive filter therefore contains 

not only terms involving the input values (xn, xn-1, xn-2, ...) but also terms in yn-1, yn-2, ... 

From this explanation, it might seem as though recursive filters require more calculations to be 

performed, since there are previous output terms in the filter expression as well as input terms. 

In fact, the reverse is usually the case: to achieve a given frequency response characteristic using 

a recursive filter generally requires a much lower order filter (and therefore fewer terms to be 

evaluated by the processor) than the equivalent nonrecursive filter. 

 

 

 Note 

Some people prefer an alternative terminology in which a non-recursive filter is known as an FIR 

(or Finite Impulse Response) filter, and a recursive filter as an IIR (or Infinite Impulse Response) 

filter. 

These terms refer to the differing "impulse responses" of the two types of  filter. The impulse 

response of a digital filter is the output sequence from the filter when a unit impulse is applied 

at its input. (A unit impulse is a very simple input sequence consisting of a single value of 1 at 

time t = 0, followed by zeros at all subsequent sampling instants). 

 

An FIR filter is one whose impulse response is of finite duration. An IIR filter is one whose 

impulse response theoretically continues for ever because the recursive (previous output) terms 

feed back energy into the filter input and keep it going. The term IIR is not very accurate because 

the actual impulse responses of nearly all IIR filters reduce virtually to zero in a finite time. 

Nevertheless, these two terms are widely used. 

 

Example of a recursive filter 

A simple example of a recursive digital filter is given by 

     

In other words, this filter determines the current output (yn) by adding the current input (xn) to 

the previous output (yn-1): 
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Note that y-1 (like x-1) is undefined, and is usually taken to be zero. 

Let us consider the effect of this filter in more detail. If in each of the above expressions we 

substitute for yn-1 the value given by the previous expression, we get the following: 

     

Thus we can see that yn, the output at t = nh, is equal to the sum of the current input xn and all 

the previous inputs. This filter therefore sums or integrates the input values, and so has a similar 

effect to an analog integrator circuit. 

This example demonstrates an important and useful feature of recursive filters: the economy 

with which the 

output values are calculated, as compared with the equivalent non-recursive filter. In this 

example, each output 

is determined simply by adding two numbers together. For instance, to calculate the output at 

time t = 10h, the 

recursive filter uses the expression 

    

To achieve the same effect with a non-recursive filter (i.e. without using previous output values 

stored in 

memory) would entail using the expression 

  

This would necessitate many more addition operations as well as the storage of many more 

values in memory. 
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Order of a recursive (IIR) digital filter 

The order of a digital filter was defined earlier as the number of previous inputs which have to 

be stored in order to generate a given output. This definition is appropriate for non-recursive 

(FIR) filters, which use only 

the current and previous inputs to compute the current output. In the case of recursive filters, 

the definition can be extended as follows: 

 

The order of a recursive filter is the largest number of previous input or output values required 

to compute the current output. 

 

This definition can be regarded as being quite general: it applies both to FIR and IIR filters. 

For example, the recursive filter discussed above, given by the expression 

   yn = xn + y n-1 

is classed as being of first order, because it uses one previous output value (yn-1), even though 

no previous inputs are required. 

 

In practice, recursive filters usually require the same number of previous inputs and outputs. 

Thus, a first-order recursive filter generally requires one previous input (xn-1) and one previous 

output (yn-1), while a second-order recursive filter makes use of two previous inputs (xn-1 and xn-

2) and two previous outputs (yn-1 and yn-2); and so on, for higher orders. 

 

Note that a recursive (IIR) filter must, by definition, be of at least first order; a zero-order 

recursive filter is an impossibility.  

 

Coefficients of recursive (IIR) digital filters 

From the above discussion, we can see that a recursive filter is basically like a non-recursive 

filter, with the addition of extra terms involving previous inputs (yn-1, yn-2 etc.). 

 

A first-order recursive filter can be written in the general form 
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Note the minus sign in front of the "recursive" term b1yn-1, and the factor (1/b0) applied to all 

the coefficients. The reason for expressing the filter in this way is that it allows us to rewrite the 

expression in the following symmetrical form: 

 

In the case of a second-order filter, the general form is 

 

The alternative "symmetrical" form of this expression is 

 

Note the convention that the coefficients of the inputs (the x's) are denoted by a's, while the 

coefficients of the outputs (the y's) are denoted by b's. 

 

The transfer function of a digital filter 

In the last section, we used two different ways of expressing the action of a digital filter: a form 

giving the output yn directly, and a "symmetrical" form with all the output terms on one side and 

all the input terms on the other. 

 

In this section, we introduce what is called the transfer function of a digital filter. This is obtained 

from the symmetrical form of the filter expression, and it allows us to describe a filter by means 

of a convenient, 

compact expression. We can also use the transfer function of a filter to work out its frequency 

response. 

 

First of all, we must introduce the delay operator, denoted by the symbol z-1. 

 

When applied to a sequence of digital values, this operator gives the previous value in the 

sequence. It therefore in effect introduces a delay of one sampling interval. 

 

Applying the operator z-1 to an input value (say xn) gives the previous input (xn-1): 
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 Suppose we have an input sequence 

     

Then 

    

and so on. Note that z-1 x0 would be x-1, which is unknown (and usually taken to be zero, as we 

have already seen). 

Similarly, applying the z-1 operator to an output gives the previous output: 

     

Applying the delay operator z-1 twice produces a delay of two sampling intervals: 

 

We adopt the (fairly logical) convention 

z-1 z-1 = z-2 

i.e. the operator z-2 represents a delay of two sampling intervals: 

 

This notation can be extended to delays of three or more sampling intervals, the appropriate 

power of z-1 being used. 

 

Let us now use this notation in the description of a recursive digital filter. Consider, for example, 

a general second-order filter, given in its symmetrical form by the expression 
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We will make use of the following identities 

 

Substituting these expressions into the digital filter gives 

 

Rearranging this to give a direct relationship between the output and input for the filter, we get 

 

This is the general form of the transfer function for a second-order recursive (IIR) filter. 

 

For a first-order filter, the terms in z-2 are omitted. For filters of order higher than 2, further 

terms involving higher powers of z-1 are added to both the numerator and denominator of the 

transfer function. 

 

A non-recursive (FIR) filter has a simpler transfer function which does not contain any 

denominator terms. The coefficient b0 is usually taken to be equal to 1, and all the other b 

coefficients are zero. The transfer function of a second-order FIR filter can therefore be 

expressed in the general form 

 

 

 

For example, the three-term average filter, defined by the expression 
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can be written using the z-1 operator notation as 

 

The transfer function for the filter is therefore 

 

The general form of the transfer function for a first-order recursive filter can be written 

 

Consider, for example, the simple first-order recursive filter 

 

which we discussed earlier. To derive the transfer function for this filter, we rewrite the filter 

expression using the z-1 operator 

     

Rearranging gives the filter transfer function as 

 

As a further example, consider the second-order IIR filter 

 

Collecting output terms on the left and input terms on the right to give the "symmetrical" form 

of the filter expression, we get 

 

Expressing this in terms of the z-1 operator gives 

 

and so the transfer function is 
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IIR (Infinite Impulse Response) filter is a digital filter with feedback, as showing in the following 

picture. 

 

Digital filter is also often described in the difference equation form, which defines the relationship 

between output signal and input signal. 

 

then get 

 

where , N is the feedforward filter order,  is the feedforward filter coefficient, M is the 

feedback filter order,  is the feedback coefficient, x(n) is the input signal, and y(n) is the output  

 

signal. The term  is the feedback. 

Digital Filter Representation 

In Origin, there are four outputs for representation of IIR filter. 

 Transfer Function 
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The transfer function of IIR filter is represented in the z-domain by the ratio of two 

polynomials of complex . To find the transfer function of the IIR filter, rearrange the 

above equation as: 

 

The z-transform is represented as: 

 

Take the z-transform of each side of the filter equation, then get 

 

The transfer function of IIR filter in the z-domain represents: 

 

 Zero-Pole-Gain 

As the transfer function shows above, the numerator is for the location of zeros, and the 

denominator for the poles. Then the transfer function can be rewritten as zero-pole-gain 

form. 

 

where k is the gain,  and  are the zeros and poles of the transfer function, respectively. 

 State-Space 

The state-space representation for the filter system can be defined as: 

 

 

where u(n) is the input, x(n) is the state vector, y(n) is the output, A is an m-by-m matrix, m is 

the filter order, B is a column vector, C is row vector, and D is a scalar. 

 Second Order Section (SOS) 

The equivalent second order section representation of the digital filter transfer function is 

written as: 

 

where g is the gain,  are the numerator coefficients, and  are the 

denominator coefficients. If the filter order m is even, , if m is 

odd, . And SOS can be represented as the following L-by-6 matrix. 
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How to Design IIR Filter 

The typical procedure to design IIR filter is: 

1. Specify filter specification. 
2. Specify low pass analog filter prototype, and the available prototypes supported in Origin include 

Butterworth, Chebyshev Type I, Chebyshev Type II, and Elliptic. 

Method 
Squared Magnitude Response 

Function 
Analog Filter Transfer Function 

Butter

worth 
 

 

Cheby

shev 

Type I  

 

Cheby

shev 

Type II  

 

Elliptic 
 

 

In the table above,  is the frequency, N is the filter order,  is the maximum oscillation in 

the passband frequency response,  is the Chebyshev polynomial,  is the Jacobian 

elliptic function, g is the scalar gain, s is the plane of Laplace transform,  or  is the zero, 

and  or  is the pole. 

3. Frequency transform for analog filter 

Transform the low pass filter into a high pass, band pass, or band stop filter with desired 

cutoff frequency. In Origin, the state-space form will be used in the frequency transform 

calculation. Assume the original transfer function of the low pass filter is , and the 

transfer function after transform is . 



122 

 

o Low pass to low pass, which transforms an analog low pass filter with cutoff 

frequency of 1 rad/s into a low pass filter with any specified cutoff frequency. 

 

o Low pass to high pass 

 

o Low pass to band pass 

 

o Low pass to band stop 

 

where  is the center frequency,  is the 

bandwidth,  and  are the lower and upper band edges respectively. 

4. Convert analog filter into a digital filter. 

To convert analog filter into a digital filter, Origin uses the bilinear transformation, which is 

defined by expression: 
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IIR discrete time filter design by bilinear transformation 

Introduction:  Many design techniques for IIR discrete time filters have adopted ideas and 

terminology developed for analogue filters, and are implemented by transforming the transfer 

function of an analogue ‘prototype’ filter into the system function of a discrete time filter with 

similar characteristics.  We therefore begin this section with a reminder about analogue filters. 

 

3.1 Analogue filters: Classical theory for analogue filters operating below about 100 MHz is 

generally based on “lumped parameter” resistors, capacitors, inductors and operational 

amplifiers (with feedback) which obey LTI equations and differential equations:  (i(t)=Cdv(t)/dt, 

v(t)=Ldi(t)/dt, v(t)=i(t)R,  v 0 (t) = A v i (t).  Analysis of such LTI circuits gives a relationship between 

input x(t) and output y(t) in the form of a differential equation: 

b y t b
dy t

dt
b

d y t

dt
a x t a

dx t

dt
a

d x t

dt
0 1 2

2

2 0 1 2

2

2
( )

( ) ( )
( )

( ) ( )
                      

whose transfer function is of the form: 

               a0 + a1s + a2s2+ ... + aNsN 

   H a (s) =   

               b0 + b1s + b2s2 + ,,, + bMsM 

This is a rational function of s of order MAX(N,M).  Replacing s by j gives the frequency 

response  

H a (j), where  denotes frequency in radians/second.  For values of s with non-negative real 

parts,   
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H a (s ) is the Laplace Transform of the analogue filter’s impulse response h a (t).  H(s) may be 

expressed in terms of its poles and zeros as: 

 

                   (s - z 1 ) ( s - z 2 ) ... ( s - z N) 

 H a (s) =  K       

                    (s - p 1 ) ( s - p 2 ) ... ( s - p M) 

 

There is a wide variety of techniques for deriving H a (s) to have a  frequency response which 

approximates a specified function.  For example, we have previously derived a general 

expression for the system function of an n th order analogue Butterworth low-pass filter.  Such 

analogue filters have an important property in common with IIR type discrete time filters: their 

impulse responses are also infinite.   

 

Example:   Consider the first order analogue low-pass filter below with input and output 

voltages x(t) and y(t) respectively:- 

                            

R

C

x(t) y(t)

 

 

The differential equation for this circuit is:    y(t) + RC dy(t)/dt  =  x(t) 

The system function is:                                1 

                                       H a (s)  =      

                                                            1  +  RC s 

The gain response is 

                                                  1                                        1 

G a ()  =  H a (j)  =      =     

                                      1  +  RC j                 ( 1  +  (/ c )
 2 ) 

 

where  c =  1 / (RC) .  This is the gain response of a first order Butterworth low-pass filter with 

cut-off frequency  c .  It is shown graphically below when  c = 1: 
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Gain response of RC filter
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The impulse response of this analogue circuit may be calculated , for example, by looking up the 

inverse Laplace transform of H a (s).  It is as follows:- 

 

                                           0                 :    t  < 0   

               h a (t)  =    

                                 (1/[RC]) e - t / (R C)    :   t     0 

 

The question now arises, how can we transform this analogue filter into an equivalent discrete 

time filter?  There are many answers to this question.   

 

Firstly, we dispose quickly of one  method that will not work.  That is simply replacing s by z  ( or 

perhaps z - 1 ) in the expression for H a (s) to obtain H(z).  In the simple example above with 

RC = 1, the resulting function of z would have a pole at z = -1 which is on the unit circle.  Even if 

we moved the pole slightly inside the unit circle, the gain response would be high-pass rather 

than low-pass.   

Let’s forget this one. 

 

“Derivative approximation” technique:  This is a more sensible approach.  Referring back to the 

circuit diagram of the RC filter,  assume that x(t) and y(t) are sampled at intervals of T seconds to 

obtain sequences {x[n]} and {y[n]} respectively.  Remembering that: 

 

       dy(t)                                        y(t)   -   y(t  - t ) 



127 

 

                   =            lim       

         dt                           t   0              t 

 

and assuming T is “small”, we can approximate dy(t)/dt by: 

 

 

       dy(t)                                   y(t)  -  y(t - T) 

                                    

         dt                                                 T 

 

Therefore at time t = nT,  x(t) = x[n],    y(t) = y[n]    and   dy(t)/dt   (y[n] - y[n-1]) / T. 

The differential equation given above describes the relationship between x(t) and y(t) for any 

value of t.  Therefore substituting for x(t), y(t), and dy(t)/dt , at t = nT  we obtain: 

 

      y[n]  =  x[n]  - (RC/T)(y[n] - y[n-1]) 

 

   i.e.   (1 + RC/T) y[n]  =  x[n]  +  (RC/T)y[n-1] 

 

   i.e.    y[n]  =  a 0  x[n]  -  b 1  y[n-1] 

 

where a 0   =  1/(1 + RC/T)  and b 1   =  - RC/(T + RC) 

 

This is the difference equation of the  recursive discrete time filter illustrated below: 
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x[n]
y[n]

a0

-b1

 

The 3 dB cut-off frequency of the original analogue filter is at  c  =  1/(RC) radians/second.  

Instead of making this equal to one as before, let’s make it 500 Hz.   

Then 1/(RC) = 2 x 500  =  3141. We could make R = 1 kOhm and C = 1/(2) F. 

Also let T = 0.0001 seconds, corresponding to a sampling rate of 10 kHz. 

Then the parameters for the recursive discrete time filter are a 0 = 0.24 and b 1 = -0.76. 

The resulting difference equation for a recursive discrete time filter whose 3 dB cut-off point is 

at 500 Hz when the sampling rate is 10 kHz is: 

                                     y[n]  =  0.24 x[n]  +  0.76 y[n-1] 

The system function for this discrete time filter is H(z) = 0.24 / (1 - 0.76 z - 1 ). 

 

As an exercise, compare its gain response H(e j  )  with that of the original analogue filter. 

You should find that the shapes are similar, but not exactly the same. 

The derivative approximation technique may be applied directly to H a (s) by simply replacing s 

by 

 (1 - z - 1 )/T to obtain the required function H(z).  It is not commonly used. 

 

3.1.1 “Impulse response invariant” technique: 

The philosophy of this technique is to transform an analogue prototype filter into an IIR discrete 

time filter whose impulse response {h[n]} is a sampled version of the analogue filter’s impulse 

response, multiplied by T.   The impulse response invariant technique will be covered later. 

 

Bilinear transformation technique: 

This  is the  most common method for transforming the system function Ha (s) of an  analogue 

filter to the system function H(z) of an IIR discrete time filter.   It is not the only possible 

transformation, but a very useful and reliable one. 

Definition:     Given analogue transfer function H a (s), replace s by 
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2 1

1T

z

z













                            

to obtain H(z).   For convenience we can take T=1. 

 

Example 3.1:    If  H a (s) = 1 / (1 + RC s )  then 

                                             z + 1                                          1  +  z - 1 

       H(z)      =            =     K      

                               (1 + 2RC)z  +  (1 - 2RC)                        1  +  b 1 z - 1 

 

where K = 1 / (1+2RC)  and  b 1   =   (1 - 2RC) / (1 + 2RC) 

 

Properties:  

(i) This transformation produces a function H(z) such that given any complex number z,   
                                    H(z) = Ha(s)   where   s  =  2 (z - 1) / (z + 1) 

(ii) The order of H(z) is equal to the order of Ha(s) 

(iii) If Ha (s) is causal and stable, then so is H(z). 

(iv) H(exp(j)) = H a (j) where  = 2 tan(/2) 

 

Proof of (iii):   Let z p  be a pole of H(z).   

 Then s p  must be a pole of H a (s)  where s p  =  2 (z p  - 1)/(z p  + 1).   

 Let s p = a + jb.  Then a < 0  as H a (s) is causal & stable.  

 Now (z p + 1)(a + jb)  =  2 (z p  - 1) ,  therefore  z p  = (a + 2 + jb) / (-a + 2 - jb)  and 

 

                         (a + 2)2 + b2 

    z p 
2    =               <  1             if  a < 0 

                         (2 - a)2 + b2 
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Hence if all poles of H a (s) have real parts less than zero, then all poles of H(z) must lie inside the 

unit circle. 

 

Proof of (iv):  When z = exp(j), then 

 

                           exp(j)-1               2(e j   / 2 - e - j  / 2 )          

         s    =     2      =         =    2 j tan(/2) 

                          exp(j)+1                e j  / 2  +  e -j  / 2            

Fig 3.1: Frequency warping
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Frequency warping:  By property (iv) the discrete time filter's frequency response H(exp(j))  at 

relative  frequency  will be equal to the analogue  frequency  response H a (j) with  = 

2 tan(/2).  The graph of  against  in fig 3.1, shows how  in the range - to  is mapped to 

 in the range - to .  The mapping  is reasonably linear for  in the range -2 to 2 (giving  in 

the range -/2  to /2), but as  increases beyond this range, a given increase in  produces 

smaller and smaller increases in .  Comparing the analogue  gain response shown  in  fig 3.2(a) 

with the discrete time one in fig. 3.2(b) produced  by  the transformation,  the  latter becomes 

more and more compressed as    .  This "frequency warping"  effect must be taken into 

account when determining a suitable Ha(s) prior to the bilinear transformation. 
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 

|Ha(j   )| |H(exp(j   )|





 

Fig 3.2(a): Analogue gain response Fig 3.2(b): Effect of bilinear transformation   

 

Design of an IIR low-pass filter by the bilinear transformation method: 

Given the required cut-off frequency c  in radians/sample:- 

(i) Find H a (s) for an analogue low-pass filter with  cut-off   c  =  2 tan( c /2) radians/sec.   

                            ( c   is said to be the "pre-warped" cut-off frequency). 

(ii) Replace s by 2(z - 1)/(z + 1) to obtain H(z). 

(iii) Rearrange the expression for H(z) and realise by biquadratic sections. 

 

Example 3.2 : Design a second order Butterworth-type IIR  lowpass filter with  c  =  / 4. 

Solution: Pre-warped frequency  c  =  2 tan( / 8)  =  0.828 

For an analogue Butterworth low-pass  filter with cut-off frequency 1 radian/second: 

                      H a (s) = 1 / (1 + 2 s   +  s 2 ) 

Replace s by s / 0.828, then replace s by 2(z - 1)/(z + 1) to obtain: 

                             z 2  + 2z + 1                                               1 + 2 z -1 + z - 2           

       H(z)   =         =           0.097        

                         10.3 z 2  - 9.7 z  +  3.4                              1 - 0.94 z - 1  + 0.33 z - 2    

 

which  may be realised by the signal flow graph in fig 3.3.  Note  the  extra multiplier scaling the 

input by 0.097 . 
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x[n] y[n]

Fig. 3.3

0.097

20.94

-0.33

  

 

Higher order IIR digital filters:  Recursive filters of order greater than two  are highly sensitive to 

quantisation error and overflow.  It is normal,  therefore,  to design higher order IIR filters as 

cascades of bi-quadratic sections. 

 

Example 3.3: A Butterworth-type IIR low-pass digital filter is needed with 3dB cut-off at one 

sixteenth of the sampling frequency f s , and a stop-band attenuation of at least 24 dB  for all 

frequencies above  

f s  / 8.    (a) What order is needed?     (b) Design it. 

Solution:  

(a) The relative cut-off frequency is /8. 

      The pre-warped cut-off frequency:  c   =  2 tan((/8)/2)  0.40  radians/second.  

      For an n t h  order Butterworth low-pass filter with cutoff   c  , the gain  is: 

                                                   1 

             H a (j)   =      

                                         [1 + (/0.4) 2 n ] 

 

     The gain of the IIR filter must be less than -24dB at the relative frequency  = /4. 

This means that the gain of the analogue prototype filter must be less than -24 dB at the pre-

warped frequency corresponding to  = /4,  i.e. at   =  2 tan(/8)    0.83 

Therefore,    20 log 1 0 (1/[1+(.83/.4) 2 n  ])    <   -24  

          i.e.,    [1 + (2.1) 2 n ]  >  10 1.2 

Hence n must be such that 1 + (2.1) 2 n    > 10 2 . 4    =  252 .  
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We find that n  =  4 is the smallest possible. 

 

(b) Formula for 4th order Butterworth 1 radian/sec low-pass system function:  

                                      1                                 1                          

     Ha(s) =              

                      1 +  0.77 s  +  s 2              1  + 1.85 s  +  s2            

Scale the analogue cut-off frequency to  c   by replacing s by s / 0.4. 

Then replace s by 2 (z - 1)/(z +1) to obtain: 

 

                           1 + 2 z - 1 +  z - 2                     1  +  2 z -1  +  z -  2              

H(z) =  0.033       0.028             

                         1  - 1.6 z - 1 + .74 z - 2               1 -1.365 z - 1  + 0.48 z - 2  
  

 

H(z) may be realised in the form of cascaded bi-quadratic sections as shown in fig 3.4.   

x[n]
0.033

21.6

-0.74

0.028
y[n]

21.36

-0.48

Fig. 3.4:  Fourth order IIR Butterworth filter with cut-off  fs/16  
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Fig. 3.5(a) Analogue 4th order Butterworth gain response
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Fig. 3.5(b): Gain response of 4th order IIR filter
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Fig. 3.5(a) shows the gain response for the 4th order Butterworth low-pass filter whose transfer 

function was used here as a prototype. Fig 3.5(b) shows the gain response of the derived digital 

filter which, like the analogue filter, is 1 at zero frequency and 0.707 at the cut-off frequency.  

Note however that the analogue gain approaches 0 as    whereas the gain of the digital 

filter becomes exactly zero at  = . The shape of the Butterworth gain response is "warped" by 

the bilinear transformation.  However, the 3dB point occurs exactly at  c for the digital filter, 

and the cut-off rate becomes sharper and sharper as    because of the compression as 

  . 

 

IIR discrete time high-pass band-pass and band-stop filter design: 

The bilinear transformation may be applied to analogue transfer functions obtained by means of 

the high-pass, band-pass and band-stop frequency transformations considered earlier.  As in the 

low-pass case, cut-off frequencies must be pre-warped to find  appropriate analogue cut-off 

frequencies.  For band-pass and band-stop filters, there are two cut-off frequencies to be pre-

warped.   
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Example :  Design a 4th order band-pass filter with  L =  / 4 ,   u  =  / 2. 

Solution: Prewarp both cutoff frequencies:  

                   L  = 2 tan ((/4)/2)  =  2 tan(/8)  =  0.828 ,  

                   u = 2 tan((/2)/2))   =  2 tan(/4)  =  2 

Now derive H a (s) for a 4th order analogue band-pass filter, with pass-band  L   to   u ,  starting 

from  a 2nd order Butterworth 1  radian/sec  prototype:  

                                     H a (s) = 1 / (s 2 + 2 s + 1).    

This requires s to be replaced by (s 2  + 1.66 ) / 1.17 s  and produces  an  analogue  system 

function whose denominator  is  a  4th  order polynomial  in  s.  

 

 

                                                  1.37 s 2 

                          

                        s 4   + 1.65 s 3  + 4.69 s 2   + 2.75 s   + 2.76 

 

It is now necessary to express the denominator as the product of two second order polynomials 

in s.  This may be done by running a “root finding” computer program. 

Such a program is “ROOTS87.EXE” (available on application).  Running this program produces 

the following output:- 

 

ENTER ORDER: 4 

R(0): 2.76      R(1): 2.75      R(2): 4.69      R(3): 1.65       R(4): 1 

ROOTS ARE:- 

RE: -0.5423    IM:  1.7104             RE: -0.2827   IM: -0.8817 

RE: -0.5423    IM: -1.7104             RE: -0.2827   IM:  0.8817 

 

Therefore,  

                                                        1.37 s 2 
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H a (s)  =     

                 (s - [-0.54+1.17j])(s - [-0.54-1.17j])( s - [-0.28+0.88j])(s - [-0.28-0.88j]) 

 

Combining the first two factors and the last two factors of the denominator, which have 

complex conjugate roots,  we   obtain  Ha (s)  factorised  into  second  order   sections:-   

                                                     1.37 s 2   

    H a (s) =                 

                                (s 2  + 1.085 s  + 3.22)(s 2  + 0.565 s  +  0.857) 

 

Replacing s by 2(z - 1)/(z + 1) gives the  transfer function:- 

 

                                           5.48 (z - 1) 2  (z + 1) 2 

H(z)     =         

                        (9.4 z 2   - 1.57 z  + 5   )  ( 6 z 2  - 6.3 z  + 3.7) 

 

Rearranging into two bi-quadratic sections (we can do this in different ways) we obtain: 

                                   1 -  2 z -1 + z - 2                         1 +  2 z  - 1  +   z  -  2        

     H(z)   =      0.098                      

                                1 -  0.167 z - 1  + 0.535 z - 2         1 - 1.05 z -1  +  0.62 z - 2   

 

whose gain response is shown in fig. 3.6. 
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The design of analogue band-pass and band-stop system functions Ha(s) as required for realisation 

as analogue or digital filters can be greatly simplified if the filters can be considered "wide-band", 

i.e. where U >> 2L  radians/second.  In this case , it is reasonable to express Ha(s) = HLP(s) 

HHP(s)  where for a band-pass filter HLP(s) is the analogue  system function  of a low-pass filter 

cutting off at =U and HHP(s) is for a high-pass filter cutting off at  =L  .  HLP(s) and HHP(s)  

can now be designed separately and also transformed separately to functions of z via the bilinear 

(or other) transformation.  Thus we obtain the transfer function H(z) = HLP(z) HHP(z) which may 

be  realised as a serial cascade of two digital filters realising  HLP(z) and HHP(z) .  Of course each 

of  HLP(z) and HHP(z) may in itself be a cascade of several second or first order sections.  This 

approach does not work very well for "narrow-band" filters where  the analogue frequencies (i.e. 

the pre-warped frequencies if we are using the bilinear transformation) do not satisfy U >> 2L  . 

In this case we have to use the frequency band transformation method as outlined above ( which 

generally involves factorising fourth order polynomials by computer). 

 

Comparison of IIR and FIR digital filters: 

IIR type digital filters have the advantage of being economical in their use of  delays,  multipliers 

and adders.   They have the disadvantage  of  being sensitive to coefficient round-off inaccuracies 

and the effects of  overflow in fixed point arithmetic.  These effects can lead to instability or 

serious distortion. Also, an IIR filter cannot be exactly linear phase.  

FIR  filters may be realised by non-recursive structures which  are  simpler and  more  convenient  

for programming especially  on  devices  specifically designed for digital signal processing.  

These structures are always stable, and because there is no recursion, round-off and overflow 

errors are  easily controlled.    An  FIR  filter  can  be  exactly  linear  phase.   The  main 

disadvantage of FIR filters is that large orders can be required to  perform fairly simple filtering 

tasks. 
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Problems: 

D3.1  A low-pass IIR discrete time filter is required with a cut-off frequency of one quarter of the  

      sampling frequency, f s , and a stop-band attenuation of at least 20 dB for all frequencies  

      greater than 3f s /8 and less than f s /2.  If the filter is to be designed by the bilinear  

      transformation applied to a Butterworth low-pass transfer function, show that the minimum  

      order required is three.   Design the IIR filter and give its signal flow graph.   

D3.2  Given that the system function of a third order analogue Butterworth low-pass filter with     

       3 dB cut-off frequency at 1 radian/second is: 

 

                                                                             1 

                                               H a  (s)  =    

                                                                 (s
 2

  + s + 1)( s + 1) 

      use the bilinear transformation method to design a third order discrete time high-pass filter  

      with 3 dB cut-off frequency at one quarter of the sampling frequency. 

 

D3.3  Given the system function 1/(1+s) for a first order analogue Butterworth low-pass filter 

with  

       cut-off frequency 1 radian/second, use the bilinear transformation to design a second order  

       IIR discrete time band-pass filter whose 3 dB cut-off frequencies are at 1467 Hz and  

       2500 Hz when the sampling frequency is 10 kHz. 

 

D3.4. How may an analogue low-pass transfer function Ha(s) with cut-off frequency 1 radian per 

second be transformed to a high-pass transfer function with cut-off frequency C ?  If an n
th

 order 

Butterworth low-pass transfer function were transformed in this way, what would be the resulting 

gain-response?  Explain how an analogue band-pass transfer function with cut-off frequencies L 

and U be obtained, in some cases, by cascading a low-pass and a high-pass transfer function. 

 

D3.5. An IIR  discrete time band-pass filter is required with 3dB cut-off frequencies at 400 Hz 

and 2 kHz.  The sampling frequency is 8 kHz.  Assuming a pass-band gain of 0 dB, the gain must 

be less than -20 dB  at frequencies below 50 Hz and at frequencies between 3 kHz and 4 kHz.  
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Show that it is reasonable to design the filter by applying the bilinear transformation method to a 

Butterworth low-pass transfer function and a separate high-pass transfer function to be arranged 

in cascade.   Show that to meet the specification, the minimum order of low-pass and high-pass 

filter is 3 and 1 respectively.    Design the IIR discrete time band-pass filter and give its signal 

flow graph.  Remember that the general formula for an  nth order Butterworth low-pass analogue 

transfer function with cut-off frequency C is: 

                                                        1 

       Ha(s) =  

                                        [n/2] 

                        (1+s/c)
P 

   {1 + 2sin[(2k-1)/2n]s/c + (s/c)
2
} 

                                         k=1 

where [n/2] is the integer part of n/2 and P=0 or 1 depending on whether n is even or odd. 
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Fig. 3.5(a): Analogue 4th order Butterworth gain response
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Digital Filter Design - Background 

In this section, some background information is provided to clarify why the particular type of filter 

is chosen. 

IIR Filters 

One type of digital filter is the Infinite Impulse Response (IIR) filter, which is not as well 

supported and is generally used in the lower sample rates (i.e., < 200kHz). The IIR uses feedback 

in order to compute outputs, and it is known as a recursive filter.  

Advantages of the IIR Filter:  

1.Better magnitude response 

2.Fewer coefficients 

3.Less storage is required for storing variables 

4.A lower delay 

5. It is closer to analog models  

A number of different classical IIR filters are available.  

Butterworth 

The Butterworth filter provides the best approximation to the ideal lowpass filter response at 

analog frequencies. Passband and stopband response is maximally flat. 

Bessel 

Analog Bessel lowpass filters have maximally flat group delay at zero frequency and retain nearly 

constant group delay across the entire passband. Filtered signals therefore maintain their 

waveshapes in the passband frequency range. Frequency mapped and digital Bessel filters, 

however, do not have this maximally flat property. Bessel filters generally require a higher filter 

order than other filters for satisfactory stopband attenuation. 

IIR Filter Expressions 

IIR Filters are recursive: the output is fed back to make a contribution. The expression for the IIR is 

shown below; note that a delayed version of the y(n) output plays a part in the output:  

 

a(i) and b(i) are the coefficients of the IIR filter. Another way to express a IIR Filter is as a transfer 

function with numerator coefficients “bi” and denominator coefficients “ai”: 
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3.3 IIR Filter Structures 

Direct Form II 

The Direct Form I architecture description noted that the forward and reverse FIR filter stages can 

be swapped, which creates a centre consisting of two columns of delay elements. From this, one 

column can be formed; hence, this type of structure is known as “canonical”, meaning it requires 

the minimum amount of storage.  

 

 

 

 

 

 

 

 

Figure 1: Direct Form II representation of a biquad 

 

Biquad 

The Biquad filter structure is that of a Direct Form-II, but it includes a second-order numerator and 

denominator coefficient (i.e., it is simply two poles and two zeros). This structure is used in 

FPGA/DSP implementations, because it is not terribly sensitive to quantization effects. 

Butterworth Biquad: 

The butterworth biquad expression is: 

 

 

The coefficients in the nominator have the charm that simplify the calculations such that no 

multiplier is needed and the entire nominator can be calculated using shift and accumulators. 

Multiplications are expensive operations in FPGA/DSP implementations. 

Fixed Point Implementations 

Several issues must be examined in detail to ensure satisfactory fixed-point operation of the IIR 

filter:  

a0=1 

a1=2 

a2=1 

xn yn 

-b1 

-b2 

Z-1 

+ + 

Z-1 

wn 

wn-1 

wn-2 

K 

1 + b1*z-1 + b2*z-2 

 

1 + 2*z-1 + z-2 

 

H(z) = 
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1) Coefficient/Internal Quantization 

2) Wraparound/Saturation 

3) Scaling  

Coefficient/Internal Quantization In order to examine the effect of quantization, it is useful to 

look at the pole/zero plot. This shows how the zeros (depths in the frequency response plot) and 

poles (peaks in the frequency response plot) are positioned. In fact, an issue with IIR stability 

relates to the denominator coefficients and their positions, as poles, on the pole/zero plot:  

 

The poles for the floating-point version of the plot are shown on the left; they are within the unit 

circle (i.e., the values of the coefficients are less than 1). Once the coefficients are quantized, these 

poles move, which affects the frequency response. If they move onto the unit circle (i.e., the poles 

equal “1”), you potentially have an oscillator; If the poles become greater than 1, the filter becomes 

unstable.  

Wraparound/Saturation 

A fixed-point implementation has a certain bit width, and hence has a range. Calculations may 

cause the filter to exceed its maximum/minimum ranges. For example, let’s consider a 2’s 

complement value of ‘ 01111000’(+120) + ‘00001001’(+9) = ‘10000001’ =(-127). The large 

positive number becomes a large negative number; this is known as “wraparound”, and it can cause 

large errors.  

Scaling 

There are two methods of dealing with overflows: 

1. If scaling is used, values can never overflow. DSP processors tend to use different kinds of 

scaling in order to fit within their fixed structure.  

2. Use saturation logic. In our example, the results would be ‘01111111’(+127). 

3.4 The Artifacts of IIR filters 

The main artifacts of IIR filtering are the quantization noise and the limit cycle oscillations. 
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The truncation or rounding of the IIR accumulator at the output of filter creates quantization noise. 

This noise is fed into the filter recursive path. The noise is multiplied by the IIR recursive path 

transfer function. The impact of this noise source is very significant in the low cutoff frequency 

filters of the second order, since the recursive path gain is proportional to the second power of 

Fc/Fs ratio. The filter stages with high Q can also suffer from this effect because the gain is 

proportional to Q. 

The best way to reduce the quantization noise is improve the arithmetic accuracy.  For a multi-

stage filter, the noise contributions of the stages can add. 

The other way to reduce the quantization noise is the noise shaping. Noise shaping is feeding the 

accumulator truncation error back into the filter. That allows for better SNR at low frequencies for 

the cost of an increased noise at the high frequencies. The noise shaping with higher order error 

feedback can significantly improve the SNR, however the added complexity and limited 

performance makes it less attractive, then the increased precision arithmetic. 

The limit cycles are the low amplitude oscillations which may occur in IIR filters. The reason for 

those oscillations is a finite precision of the arithmetic operations. The limit cycle existence 

depends on the particular filter coefficients and the input data. The filters with high Q, low Fc/Fs 

ratio and the rounding of the accumulator at the output rather then with truncation have a higher 

probability of a limit cycle behavior. 

Usually the amplitude of limit cycle oscillations does not exceed several LSBs. The methods to 

avoid the limit cycles are the following: 

- Improve the precision of filter arithmetic 

- Implement a center clipping nonlinear function 

- Dithering (adding a random noise with the amplitude of several LSBs) 

- Gating: blocking the filter if the energy of the signal is below a certain limit 
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Implementation 

Block Overview 

The filter is implemented as part of the fsfb_calc block in order to share FPGA resources, 

particularly multipliers. Review fsfb_calc.doc first. 

Block Functionality 

Block Data Flow  

 

Block Location and Block Interface within System 

First Stage Feedback Filter Queue 

This 64 x 32b RAM block stores the filtered output calculation results. The width of this queue is 

the same as the wishbone data. It is important to note that the filter results are not double buffered, 

since delay is acceptable in reading filter results. When a wishbone read request comes in, the read 

starts at the beginning of the next frame, in order to be aligned with the frame boundaries. 

 

 

 

 

 

 

 

 

 

Figure 1:  First Stage Feedback Filter Queue 

First-Stage Feedback Filter Registers 

The fsfb_filter_regs block instantiates 2 RAM blocks to store the previous 2 samples of wn, where 

wn is the interim filter calculation results. For details of the filter calculations, refer to the 

fsfb_calculations.doc where the implementation of the second-order Butterworth low-pass filter 

that is implemented.  

The calculations are: 

wtemp
 
= b1* wn-1

 
+ b2* wn-2 

wn       = 
 
xn – wtemp/2

m 

yn         = wn + 2 * wn-1
 
+ wn-2 

qa 

 

data 

 

wren  

rdaddress_a 

 

wraddress 

 

Filter 

QUEUE 

 

 

64 x 32b 

  

wishbone 

(wbs_frame_data) 

     wishbone 

(wbs_frame_data) 
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where x is the input to the filter and y is the output of the filter, b1 and b2 are the filter coefficients, 

m is the number of bits for the filter coefficients. 

Note that the filter is reset through initialize_window_i signal. Each RAM block has 64 words and 

the word length is determined in the pack file by FLTR_DLY_WIDTH.  

 
 

wren

RAM (single-port)

addr

data q

wren

RAM (single-port)

addr

data q

Initialize_window_i

wn_i

addr_i

wren_i

wn1

wn2

 

Figure 2:  Filter Registers Storage 

 

 

3.5 IIR-type digital filters 

 

3.5.1. Introduction:  

 

A general causal digital filter has the difference equation: 

 

              N                    M 

       y[n]    =     a i x[n-i]    -         b k y[n-k]            

             i=0                  k=1           

 

which is of order max{ N,M }, and is recursive if any of the b j  coefficients are non-zero.  A 

second order recursive digital filter therefore has the difference equation:  

 

                 y[n] = a 0 x[n] + a 1 x[n-1] + a 2 x[n-2] - b 1 y[n-1] - b 2 y[n-2]       
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A digital filter with a recursive linear difference equation can have an infinite impulse-response.  

Remember that the frequency-response of a digital filter with impulse-response {h[n]} is: 

                 

            H(e
 j 

 ) =          h[n]e
 - j  n 

                       n=- 

 

5.9. Design of a notch filter by MATLAB: Modified in 2009-10 

Assume we wish to design a 4th order 'notch' digital filter to eliminate an unwanted sinusoid 

at 800 Hz without severely affecting rest of signal.  The sampling rate is FS = 10 kHz.  

One simple way is to use the MATLAB function ‘butter’ as follows: 

 

FS=10000;        

FL = 800 – 25 ;  FU = 800+25; 

       [a b] = butter(2, [FL FU]/(FS/2),’stop’); 

  a = [0.98  -3.43  4.96  -3.43  0.98] 

  b= [  1     -3.47  4.96  -3.39  0.96] 

       freqz(a, b);       

       freqz(a, b, 512, FS);      % Better graph 

       axis([0 FS/2 -50 5]);     % Scales axes  

 

The frequency-responses (gain and phase) produced by the final two MATLAB statements are as 

follows: 
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Since the Butterworth band-stop filter will have -3dB gain at the two cut-off frequencies  

FL = 800-25 and FU=800+25, the notch has ‘-3 dB frequency bandwidth’: 25 + 25 = 50 Hz.  

 

Now consider how to implement the 4
th

 order digital filter.  The MATLAB function gave us: 

 a = [0.98  -3.43  4.96  -3.43  0.98] 

 b=  [  1     -3.47  4.96  -3.39  0.96] 

The transfer (System) Function is, therefore: 
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A ‘Direct Form II’ implementation of the 4
th

 order notch filter would have the signal-flow graph 

below: 

 

 

 

This implementation works fine in MATLAB.  But ‘direct form’ IIR implementations of order 

greater than two are rarely used.  Sensitivity to round-off error in coefficient values will be high. 

Also the range of ‘intermediate’ signals in the z
-1

 boxes will be high. 

High word-length floating point arithmetic hides this problem, but in fixed point arithmetic, great 

difficulty occurs.  Instead we use ‘cascaded bi-quad sections’ 

  

Given a 4
th

 order transfer function H(z).  Instead of the direct form realization below: 

 

 

 

H(z) x[n] y[n] 

z-1 

z-1 

z-1 

z-1 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0.98 

3.47 

-4.96 

3.39 

-0.96 

0.0.98 

x[n] y[n] 

-3.43 

4.96 

-3.43 
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we prefer to arrange two bi-quad sections, with a single leading multiplier G, as follows: 

 

 

 

To convert the 4
th

 order transfer function H(z) to this new form is definitely a job for MATLAB.  

Do it as follows after getting a & b for the 4
th

 order transfer function, H(z), as before: 

        [a b] = butter(2, [FL FU]/(FS/2),’stop’); 

 

           [SOS  G] = tf2sos(a,b)  

 

•  MATLAB responds with: 

    SOS = 1   -1.753   1   1   -1.722   0.9776 

                1   -1.753   1   1   -1.744   0.9785 

   G = 0.978 

 

In MATLAB, ‘SOS’ stands for ‘second order section’ (i.e. bi-quad) and the function ‘tf2SOS’ 

converts the coefficients in arrays ‘a’ and ‘b’ to the new set of coefficients stored in array ‘SOS’ 

and the constant G.  The array SOS has two rows: one row for the first bi-quad section and one 

row for the second bi-quad section.  In each row, the first three terms specify the non-recursive 

part and the second three terms specify the recursive part.  Therefore H(z) may now be realized as 

follows: 

 

H1(z) H2(z) x[n] y[n] 
G 
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This is now a practical and realizable IIR digital ‘notch’ filter, though we sometimes implement 

the single multiplier G =0.918 by two multipliers, one for each bi-quad section.  More about this 

later. 

 

3.5.10 Calculation of gain-response of notch filter:  

 

How good is a notch filter?  We can start to answer this question by specifying the filter's 3dB 

bandwidth i.e. the difference between the frequencies where the gain crosses 0.707 (-3dB ).  We 

should also ask what is the gain at the notch frequency (800 Hz in previous example); i.e. what is 

the ‘depth’ of the notch.  If it is not deep enough either (i) increase the -3 dB bandwidth or (ii) 

increase the order. Do both if necessary.  To ‘sharpen’ the notch, decrease the -3dB bandwidth, 

but this will make the notch less deep; so it may be necessary to increase the order to maintain a 

deep enough notch.  This is an ‘ad-hoc’ approach – we can surely develop some theory later.  It 

modifies the more formal approach, based on poles and zeroes, adopted last year.  
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. 

 

 

Example: A  digital  filter  with a sampling rate of  200  Hz  is  required  to eliminate  an 

unwanted 50 Hz sinusoidal component of an  input  signal without  affecting  the magnitudes of 

other  components  too  severely.  Design a 4th order "notch" filter for this purpose whose 3dB 

bandwidth is not greater than 3.2 Hz.  (MATLAB calls this 2
nd

 order.) How deep is the notch? 

 

Solution:   

            FS=200;  FL=50-1.6; FU=50+1.6; 

 [a b]=butter(2,[FL,FU]/(FS/2), ‘stop’); 

 [SOS  G] = tf2sos(a,b)  

 

 

35. IIR digital filter design by bilinear transformation 
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Many design techniques for IIR discrete time filters have adopted ideas and terminology 

developed for analogue filters, and are implemented by transforming the system function, Ha(s), 

of an analogue ‘prototype’ filter into the system function H(z) of a digital filter with similar, but 

not identical, characteristics.   

 

For analogue filters, there is a wide variety of techniques for deriving H a(s) to have a specified 

type of gain-response.  For example, it is possible to deriving Ha(s) for an n
 th

 order analogue 

Butterworth low-pass filter, with gain response: 

 

                                                                           

 

 

It is then possible to transform Ha(s) into H(z) for an equivalent digital filter.  There are many 

ways of doing this, the most famous being the ‘bilinear transformation’.  It is not the only 

possible transformation, but a very useful and reliable one. 

 

The bilinear transformation involves replacing s by (2/T) (z-1)/(z+1)], but fortunately, MATLAB 

takes care of all the detail and we can design a Butterworth low pass filter simply by executing 

the MATLAB statement: 

 

   [a b] = butter(N, fc)  

 

N is the required order and fc is the required ‘3 dB’ cut-off frequency normalised (as usual with 

MATLAB) to fS/2.  Analogue Butterworth filters have a gain which is zero in the pass-band and 

falls to -3 dB at the cut-off frequency.  These two properties are preserved by the bilinear 

transformation, though the traditional Butterworth shape is changed.   The shape change is caused 

by a process referred to as ‘frequency warping’. Although the gain-response of the digital filter is 

consequently rather different from that of the analogue Butterworth gain response it is derived 

from, the term ‘Butterworth filter’ is still applied to the digital filter.  The order of H(z) is equal to 

the order of Ha(s) 

 

Frequency warping:   
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It may be shown that the new gain-response G() = Ga() where  = 2 tan(/2).  The graph of  

against  below, shows how  in the range - to  is mapped to  in the range - to .  The 

mapping is reasonably linear for  in the range -2 to 2 (giving  in the range -/2 to /2), but as 

 increases beyond this range, a given increase in  produces smaller and smaller increases in . 

The effect of frequency warping is well illustrated by considering the analogue gain-response 

shown in fig 5.17(a).  If this were transformed to the digital filter gain response shown in fig 

5.17(b),  the  latter would become more and more compressed as    .  

 

 

 

|Ha(j   )| |H(exp(j     )|





 

Fig 6.2(a): Analogue gain response Fig 6.2(b): Effect of bilinear transformation

 

‘Prototype’ analogue transfer function:  Although the shape changes, we would like G()  at 

its cut off C to the same as Ga() at its cut-off frequency.  If Ga() is Butterworth, it is -3dB at 

its cut-off frequency.  So we would like G() to be -3 dB at its cut-off C. 

Achieved if the analogue prototype is designed to have its cut-off frequency at C = 2 tan(C/2). 

C is then called the ‘pre-warped’ cut-off frequency. 

Designing the analogue prototype with cut-off frequency 2 tan(C/2) guarantees that the digital 

filter will have its cut-off at C. 
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Design of a 2nd order IIR low-pass digital filter by the bilinear transform method (‘by 

hand’) 

Let the required cut-off frequency C = /4 radians/sample.  We need a prototype transfer 

function Ha(s) for a 2nd order analogue Butterworth low-pass filter with 3 dB cut-off at C = 

2tan(C/2) = 2 tan(/8) radians/second.  Therefore,   C = 2 tan(/8) = 0.828.  It is well known 

by analogue filter designers that the transfer function for a 2nd order Butterworth low-pass filter 

with cut-off frequency =1 radian/second is: 

 

 

 

When the cut-off frequency is  = C rather than  = 1, the second order expression for H(s) 

becomes: 

 

 

 

 

Replacing s by j and taking the modulus of this expression gives G() = 1/[1+(/C)2n] with 

n=2.  This is the 2
nd

 order Butterworth low-pass gain-response approximation.  Deriving the 

above expression for Ha(s), and corresponding expressions for higher orders, is not part of our 

syllabus.   It will not be necessary since MATLAB will take care of it. 

 

Setting C = 0.828 in this formula, then replacing s by 2(z-1)/(z+1) gives us H(z) for the required 

IIR digital filter.  You can check this ‘by hand’, but fortunately MATLAB does all this for us. 

 

Example 3. 5.4. 4: 

Using MATLAB, design a second order Butterworth-type IIR low-pass filter with  c  =  / 4. 

 

Solution:  

   [a b] = butter(2, 0.25) 

 

2)2(1

1
)(

ss
sHa




2)/()/(21

1
)(

CC

a
ss

sH
 





156 

 

a = [0.098    0.196    0.098] 

b = [1   -0.94    0.33] 

 

The required expression for H(z) is 

      

                       0.098  + 0.196 z-1 + 0.098 z-2     

       H(z)   =       

                         1  - 0.94 z-1  +  0.33z-2    
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which may be realised by the signal flow graph in fig 5.18.  Note the saving of two multipliers by 

using a multipler to scale the input by 0.098. 

 

          

x[n] y[n]

Fig. 6.3

0.097

20.94

-0.33

 

 

3.5.12: Higher order IIR digital filters:   

 

Recursive filters of order greater than two are highly sensitive to quantisation error and overflow.  

It is normal, therefore, to design higher order IIR filters as cascades of bi-quadratic sections.  

MATLAB does not do this directly as demonstrated by Example 5.8. 

 

Fig. 5.18 
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Example 3. 5.4. 6: Design a 4
th

 order Butterworth-type IIR low-pass digital filter is needed with 

3dB cut-off at one sixteenth of the sampling frequency fS. 

 

Solution:   Relative cut-off frequency is /8.  The MATLAB command below produces the 

arrays a and b with the numerator and denominator coefficients for the 4
th

 order system function 

H(z). 

 

   [a b] = butter(4, 0.125) 

 

Output produced by MATLAB is: 

 

 a = 0.00093    0.0037    0.0056    0.0037    0.00093 

 b = 1   -2.9768    3.4223   -1.7861    0.3556 

 

The system function is therefore as follows: 

 

 

 

 

 

This corresponds to the ‘4
th

 order ‘direct form’ signal flow graph shown below. 

  

















4321

4321

3556.0786.1422.3977.21

00093.00037.0056.0037.000093.0

zzzz

zzzz
zH



158 

 

 

  Figure : A 4
th

 order ‘direct form II’ realisation (not commonly used) 

 

Higher order IIR digital filters are generally not implemented like this.  Instead, they are 

implemented as cascaded biquad or second order sections (SOS).  Fortunately MATLAB can 

transform the ‘direct form’ coefficients to second order section (SOS) coefficients using a ‘Signal 

Processing Toolbox’ function ‘tf2sos’ as follows: 

 

 [a b] = butter(4, 0.125) 

 [sos G] = tf2sos(a,b) 

 

Executing these statements gives the following response: 

 

 [a b] = butter(4, 0.125) 

 a = [0.0009    0.0037    0.0056    0.0037    0.0009] 

 b = [1   -2.9768    3.4223   -1.7861    0.3556 ] 

 [sos G] = tf2sos(a,b) 

 sos = [1    2    1    1   -1.365    0.478  

                    1    2    1    1   -1.612    0.745 ] 

 G = 0.00093 

 

+ 

+ 

+ 

+ 

+ 

0.0009
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This produces a 2-dimensional array ‘sos’ containing two sets of biquad coefficients and a ‘gain’ 

constant G.  A mathematically correct system function based on this data is as follows: 

  

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In practice, especially in fixed point arithmetic, the effect of G is often distributed among the two 

sections.  Noting that 0.033 x 0.028   0.00093, and noting also that the two sections can be in 

either order, an alternative expression for H(z) is as follows: 
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This alternative expression for H(z) may be realised in the form of cascaded bi-quadratic sections 

as shown in fig 5.20.   

 

x[n]
0.033

21.6

-0.74

0.028
y[n]

21.36

-0.48

Fig. 6.4:  Fourth order IIR Butterworth filter with cut-off  fs/16
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Fig. (a) Analogue 4th order Butterworth LP gain response 
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Fig. (a) shows the 4th order Butterworth low-pass gain response: 

)1(

1
)(

8



G  

 (with cut-off frequency normalised to 1) as used by MATLAB as a prototype. Fig 5.21(b) shows 

the gain-response of the derived digital filter which, like the analogue filter, is 1 at zero frequency 

and 0.707 (-3dB) at the cut-off frequency (/8 0.39 radians/sample).  Note however that the 

analogue gain approaches 0 as    whereas the gain of the digital filter becomes exactly zero 

at  = . The shape of the Butterworth gain response is ‘warped’ by the bilinear transformation.  

However, the 3dB point occurs exactly at  c for the digital filter, and the cut-off rate becomes 

sharper and sharper as    because of the compression as   . 

 

3. 5.: IIR digital high-pass band-pass and band-stop filter design: 

 

The bilinear transformation may be applied to analogue system functions which are high-pass, 

band-pass or band-stop to obtain digital filter equivalents. For example a ‘high-pass’ digital filter 

may be designed as illustrated below: 

 

Example 3. 5.4. 7: Design a 4
th

 order high-pass IIR filter with cut-off frequency fs/16. 

Solution: Execute the following MATLAB commands and proceed as for low-pass 

                   [a b] = butter(4,0.125,’high’); 

        freqz(a,b); 

        [sos G] = tf2sos(a,b) 
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Wide-band band-pass and band-stop filters (fU >> 2fL) may be designed by cascading low-pass 

and high-pass sections, but 'narrow band' band-pass/stop filters  (fU  not >> 2fL) will not be very 

accurate if this cascading approach is used.  The MATLAB band-pass approach always works, 

i.e. for narrowband and wideband. A possible source of confusion is that specifying an order ‘2’ 

produces what many people (including me, Barry) would call a 4th order IIR digital filter.  The 

design process carried out by ‘butter’ involves the design of a low-pass prototype and then 

applying a low-pass to band-pass transformation which doubles the complexity.  The order 

specified is the order of the prototype. So if we specify 2nd order for band-pass we get a 4th order 

system function which can be re-expressed (using tf2sos) as TWO biquad sections. 

 

Example 3. 5.4. 8::  L =   u = /2. 

Solution: Execute the following MATLAB statements: 

   [a b] = butter(2,[0.25 0.5]) 

   freqz(a,b); 

   [sos G] = tf2sos(a,b) 

MATLAB output:is: 

a =  0.098  0   -0.195  0  0.098 

b = 1   -1.219    1.333   -0.667    0.33 

sos =  1    2    1    1   -0.1665    0.5348 

          1   -2    1    1   -1.0524    0.6232 

G = 0.098 
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Example 3. 5.4. 9::  L =   u = /2. 

Solution: Execute the following MATLAB statements 

   [a b] = butter(4,[0.25 0.5]) 

   freqz(a,b);  axis([0 1 -40 0]); 

   [sos G] = tf2sos(a,b) 

to obtain the MATLAB output: 

a = 0.01   0   -0.041  0    0.061   0   -0.041   0    0.01 

b = 1  -2.472   4.309   -4.886   4.477   -2.914    1.519   -0.5    0.12 

sos =1    2    1    1   -0.351    0.428 

        1   -2.    1    1   -0.832    0.49 

        1    2.    1    1   -0.046    0.724 

        1   -2    1    1   -1.244     0.793 

G = 0.01 
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Example 3. 5.4. 10:: Design a 4th (8th)order band-stop filter  L =   u = /2. 

Solution: Execute the following MATLAB statements 

   [a b] = butter(4,[0.25 0.5], ‘stop’) 

   freqz(a,b); axis([0 1 -40 0]); 

   [sos G] = tf2sos(a,b) 

to obtain the MATLAB output: 

a = 0.347   -1.149    2.815   -4.237    5.1   -4.237    2.815   -1.149    0.347 

b = 1   -2.472    4.309   -4.886    4.477   -2.914    1.519   -0.5    0.12 

 

sos =    1   -0.828    1    1   -0.351    0.428 

 1   -0.828    1    1   -0.832    0.49 

     1   -0.828    1    1   -0.046    0.724 

     1   -0.828    1    1   -1.244    0.793 

G = 0.347 
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3.5.14: Comparison of IIR and FIR digital filters: 

 

IIR type digital filters have the advantage of being economical in their use of delays, multipliers 

and adders.   They have the disadvantage of being sensitive to coefficient round-off inaccuracies 

and the effects of overflow in fixed point arithmetic.  These effects can lead to instability or 

serious distortion. Also, an IIR filter cannot be exactly linear phase.  

 

FIR filters may be realised by non-recursive structures which are simpler and more convenient for 

programming especially on devices specifically designed for digital signal processing.  These 
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structures are always stable, and because there is no recursion, round-off and overflow errors are 

easily controlled.  A FIR filter can be exactly linear phase.   The main disadvantage of FIR filters 

is that large orders can be required to perform fairly simple filtering tasks. 

 

 

 

Lowpass IIR Filter 
Try This Example 

Design a lowpass IIR filter with order 8, passband frequency 35 kHz, and passband ripple 0.2 dB. Specify a sample rate of 200 kHz. Visualize the 

magnitude response of the filter. Use it to filter a 1000-sample random signal. 

lpFilt = designfilt('lowpassiir','FilterOrder',8, ... 

         'PassbandFrequency',35e3,'PassbandRipple',0.2, ... 

         'SampleRate',200e3); 

fvtool(lpFilt) 

 

dataIn = randn(1000,1); 

dataOut = filter(lpFilt,dataIn); 
Output the filter coefficients, expressed as second-order sections. 

sos = lpFilt.Coefficients 

sos = 4×6 

 

    0.2666    0.5333    0.2666    1.0000   -0.8346    0.9073 

    0.1943    0.3886    0.1943    1.0000   -0.9586    0.7403 

    0.1012    0.2023    0.1012    1.0000   -1.1912    0.5983 

    0.0318    0.0636    0.0318    1.0000   -1.3810    0.5090 
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Highpass IIR Filter 
Try This Example 

Design a highpass IIR filter with order 8, passband frequency 75 kHz, and passband ripple 0.2 dB. Specify a sample rate of 200 kHz. Visualize the 

filter's magnitude response. Apply the filter to a 1000-sample vector of random data. 

hpFilt = designfilt('highpassiir','FilterOrder',8, ... 

         'PassbandFrequency',75e3,'PassbandRipple',0.2, ... 

         'SampleRate',200e3); 

fvtool(hpFilt) 

 

dataIn = randn(1000,1); 

dataOut = filter(hpFilt,dataIn); 

 

Bandpass IIR Filter 

Try This Example 

Design a 20th-order bandpass IIR filter with lower 3-dB frequency 500 Hz and higher 3-dB frequency 560 Hz. The sample rate is 1500 Hz. 
Visualize the frequency response of the filter. Use it to filter a 1000-sample random signal. 

bpFilt = designfilt('bandpassiir','FilterOrder',20, ... 

         'HalfPowerFrequency1',500,'HalfPowerFrequency2',560, ... 

         'SampleRate',1500); 

fvtool(bpFilt) 
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dataIn = randn(1000,1); 

dataOut = filter(bpFilt,dataIn); 

Bandstop IIR Filter 

Try This Example 

Design a 20th-order bandstop IIR filter with lower 3-dB frequency 500 Hz and higher 3-dB frequency 560 Hz. The sample rate is 1500 Hz. 

Visualize the magnitude response of the filter. Use it to filter 1000 samples of random data. 

bsFilt = designfilt('bandstopiir','FilterOrder',20, ... 

         'HalfPowerFrequency1',500,'HalfPowerFrequency2',560, ... 

         'SampleRate',1500); 

fvtool(bsFilt) 
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dataIn = randn(1000,1); 

dataOut = filter(bsFilt,dataIn); 
Generate a 17th-order Chebyshev II bandpass filter and plot the frequency response: 

>>> 

>>> from scipy import signal 

>>> import matplotlib.pyplot as plt 

>>> 

>>> b, a = signal.iirfilter(17, [50, 200], rs=60, btype='band', 

...                         analog=True, ftype='cheby2') 

>>> w, h = signal.freqs(b, a, 1000) 

>>> fig = plt.figure() 

>>> ax = fig.add_subplot(111) 

>>> ax.semilogx(w, 20 * np.log10(abs(h))) 

>>> ax.set_title('Chebyshev Type II bandpass frequency response') 

>>> ax.set_xlabel('Frequency [radians / second]') 

>>> ax.set_ylabel('Amplitude [dB]') 

>>> ax.axis((10, 1000, -100, 10)) 

>>> ax.grid(which='both', axis='both') 

>>> plt.show() 

(Source code) 

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy-signal-iirfilter-1.py
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The iirfilt_crcf object and family implement the infinite impulse response (IIR) filters. 

Also known as recursive filters, IIR filters allow a portion of the output to be fed back 

into the input, thus creating an impulse response which is non-zero for an infinite 

amount of time. Formally, the output signaly[n]y[n] may be written in terms of the input 

signal x[n]x[n] as 
y[n]=1a0(∑j=0nb−1bjx[n−j]−∑k=1na−1aky[n−k])y[n]=1a0(∑j=0nb−1bjx[n−j]−∑k=1na−1aky[n−k]) 

where b→=[b0,b1,…,bnb−1]Tb→=[b0,b1,…,bnb−1]T are the feed-forward parameters 

and a→=[a0,a1,…,ana−1]Ta→=[a0,a1,…,ana−1]T are the feed-back parameters of 

length nbnb and nana , respectively. The zz -transform of the transfer function is therefore 

H(z)=Y(z)X(z)=∑j=0nb−1bjz−j∑k=0na−1akz−k=b0+b1z−1+⋯+bnb−1znb−1a0+a1z−1+⋯+ana−1zna−1H(z)=Y(z)X(z)=∑j=0

nb−1bjz−j∑k=0na−1akz−k=b0+b1z−1+ +bnb−1znb−1a0+a1z−1+ +ana−1zna−1 

Typically the coefficients in H(z)H(z) are normalized such that a0=1a0=1 . 

For larger order filters (even as small as n≈8n≈8 ) the filter can become unstable due to 

finite machine precision. It is often therefore useful to expressH(z)H(z) in terms of 

second-order sections. For a filter of order nn , these sections are denoted by the 

two (L+r)×3(L+r)×3 matrices B→B→ and A→A→ wherer=n\mathchoicemod2r=n\mathchoicemod2 (0 

for odd nn , 1 for even nn ) and L=(n−r)/2L=(n−r)/2 . 
Hd(z)=[Br,0+Br,1z−11+Ar,1z−1]r∏k=1L[Bk,0+Bk,1z−1+Bk,2z−21+Ak,1z−1+Ak,2z−2]Hd(z)=[Br,0+Br,1z−11+Ar,1z−1]

r∏k=1L[Bk,0+Bk,1z−1+Bk,2z−21+Ak,1z−1+Ak,2z−2] 

Notice that H(z)H(z) is now a series of cascaded second-order IIR filters. The sos form is 

practical when filters are designed from analog prototypes where the poles and zeros 

are known. liquid implements second-order sections efficiently with the 

internal iirfiltsos_crcf family of objects. For a cascaded second-order section IIR filter, 

use iirfilt_crcf_create_sos(B,A,n) . See also : iirdes (IIR filter design) in [section-filter-iirdes] . 

Listed below is the full interface to the iirfilt family of objects. The interface to 

the iirfilt object follows the convention of other liquid signal processing objects; while 

each method is listed for iirfilt_crcf , the same functionality applies 

to iirfilt_rrrf and iirfilt_cccf . 

 iirfilt_crcf_create(*b,Nb,*a,Nb) creates a new iirfilt object with NbNb feed-forward 

coefficients b→b→ and NaNa feed-back coefficients a→a→ . 

http://liquidsdr.org/doc/iirfilt/#section-filter-iirdes
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 iirfilt_crcf_create_sos(*B,*A,Nsos) creates a new iirfilt object using NsosNsos second-order 

sections. The [Nsos×3][Nsos×3] feed-forward coefficient matrix is specified 

by B→B→ and the [Nsos×3][Nsos×3] feed-back coefficient matrix is specified 

by A→A→ . 

 iirfilt_crcf_create_prototype(ftype,btype,format,order,fc,f0,Ap,As) creates a new IIR filter 

object using the prototype interface described in [section-filter-iirdes-iirdes] . This 

is the simplest method for designing an IIR filter with Butterworth, Chebyshev-I, 

Chebyshev-II, elliptic/Cauer, or Bessel coefficients. 

 iirfilt_crcf_destroy(q) destroys an iirfilt object, freeing all internally-allocated memory 

arrays and buffers. 

 iirfilt_crcf_print(q) prints the internals of an iirfilt object. 

 iirfilt_crcf_clear(q) clears the filter's internal state. 

 iirfilt_crcf_execute(q,x,*y) executes one iteration of the filter with an input xx , storing 

the result in yy , and updating its internal state. 

 iirfilt_crcf_get_length(q) returns the order of the filter. 

 iirfilt_crcf_freqresponse(q,fc,*H) computes the complex response HH of the filter at the 

normalized frequency fcfc . 

 iirfilt_crcf_groupdelay(q,fc) returns the group delay of the filter at the normalized 

frequency fcfc . 

Listed below is a basic example of the interface. For more detailed and extensive 

examples, refer to examples/iirfilt_crcf_example.c in the main liquid project source directory. 
#include <liquid/liquid.h> 

 

int main() { 

    // options 

    unsigned int order=4;   // filter order 

 

    unsigned int n = order+1; 

    float b[n], a[n]; 

 

    // ... initialize filter coefficients ... 

 

    // create filter object 

    iirfilt_crcf q = iirfilt_crcf_create(b,n,a,n); 

 

    float complex x;    // input sample 

    float complex y;    // output sample 

 

    // execute filter (repeat as necessary) 

    iirfilt_crcf_execute(q,x,&y); 

 

    // destroy filter object 

    iirfilt_crcf_destroy(q); 

} 

http://liquidsdr.org/doc/iirfilt/#section-filter-iirdes-iirdes
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Figure [fig-filter-iirfilt_crcf]. iirfilt_crcf (infinite impulse response filter) example. 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://liquidsdr.org/doc/iirfilt/filter_iirfilt_crcf_time.png
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UNIT IV 

Design of FIR Filters 

 

Introduction 

 

Filters are used in a wide variety of applications. Most of the time, the final aim of using a 
filter is to achieve a better frequency selectivity on the spectrum of the input signal. At this 
point of time, it is required to reviewing the frequency response of a practical filter. The below 
Figure (A) shows an example of a practical low pass filter. 

 In this example, frequency components in the pass band, from DC to  ωP will pass through the 
filter almost with no attenuation. The components in the stop band, above ωS will experience 
significant attenuation. Note that the frequency response of a practical filter cannot be 
absolutely flat in the pass band or in the stop band. As shown in Figure (A), some ripples will 
be unavoidable and the transition band, ωp<ω<ωs cannot be infinitely sharp in practice. 

 

Digital filter design involves four steps: 

1) Determining specifications 

First, we need to determine what specifications are required. This step completely depends 

on the application. This information is necessary to find the filter with minimum order for this 

application. 

2) Finding a transfer function 

With design specifications known, we need to find a transfer function which will provide the 
required filtering. The rational transfer function of a digital filter is as given below. 
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3) Choosing a realization structure 

Now that H(z) is known, we should choose the realization structure. In other words, there are 
many systems which can give the obtained transfer function and we must choose the 
appropriate one. For example, any of the direct form I, II, cascade, parallel, transposed, or 
lattice forms can be used to realize a particular transfer function. The main difference 
between the aforementioned realization structures is their sensitivity to using a finite length 
of bits. Note that in the final digital system, we will use a finite length of bits to represent a 
signal or a filter coefficient. Some realizations, such as direct forms, are very sensitive to 
quantization of the coefficients. However, cascade and parallel structures show smaller 
sensitivity and are preferred. 

4) Implementing the filter 

After deciding on what realization structure to use, we should implement the filter. You have 

a couple of options for this step: a software implementation (such as a MATLAB or C code) or 

a hardware implementation (such as a DSP, a microcontroller, or an ASIC). 

                  it is necessary to take into account all fundamental characteristics of a signal to be 

filtered as these are very important when deciding which filter to use. In most cases, it is only 

one characteristic that really matters and it is whether it is necessary that filter has linear 

phase characteristic or not.  it is necessary that a filter has linear phase characteristic to 

prevent loosing important information.When a signal to be filtered is analysed in this way, it is 

easy to decide which type of digital filter is best to use. Accordingly, if the phase characteristic 

is of the essence, FIR filters should be used as they have linear phase characteristic. Such 

filters are of higher order and more complex, therefore. The FIR Filters can be easily designed 

to have perfectly linear Phase. These filters can be realized recursively and Non-recursively. 

There are greater flexibility to control the Shape of their Magnitude response. Errors due to 

round off noise are less severe in FIR Filters, mainly because Feed back is not used 

An FIR digital filter of order M may be implemented by programming the signal-flow-graph 
shown below.  Its difference equation is: 

y[n] = a0x[n] + a1x[n-1] + a2x[n-2] + ... + aMx[n-M] 
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       Fig. 4.1 

Its impulse-response is {..., 0, ..., a0, a1, a2,..., aM, 0, ...} and its frequency-response is the 
DTFT of the impulse-response, i.e. 

 

 

Now consider the problem of choosing the multiplier coefficients. a0, a1,..., aM such that H( 

ej ) is close to some desired or target frequency-response H(ej) say.   The inverse DTFT of 

H’(ej) gives the required impulse-response : 
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The methodology is to use the inverse DTFT to get an impulse-response {h[n]} & then realise 
some approximation to it  Note that the DTFT formula is an integral, it has complex numbers 

and the range of integration is from - to , so it involves negative frequencies. 

 

What about the negative frequencies? 

Examine the DTFT formula for H(ej). 

 

 

 

If h[n] real then h[n]ej is complex-conjugate of  h[n]e-j.  Adding up terms gives H(e-j ) as 

complex conj of H(ej).  

 G() = G(-) since G() = |H(ej)| &  G(-) = H(e-j)|   

Because of the range of integration (- to ) of the DTFT formula, it is common to plot graphs 

of G() and () over the frequency range - to  rather than 0 to .  As G() = G(-) for a 

real filter the gain-response will always be symmetric about =0. 

Features of FIR Filter 

 1. FIR filter always provides linear phase response. This specifies that the signals in the pass 
band will suffer no dispersion Hence when the user wants no phase distortion, then FIR filters 
are preferable over IIR. Phase distortion always degrade the system performance. In various 
applications like speech processing, data transmission over long distance FIR filters are more 
preferable due to this characteristic.  

2. FIR filters are most stable as compared with IIR filters due to its non feedback nature.  

3. Quantization Noise can be made negligible in FIR filters. Due to this sharp cutoff FIR filters 
can be easily designed.  

4. Disadvantage of FIR filters is that they need higher ordered for similar magnitude response 
of IIR filters. 
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Difference equation of FIR filter of length M is given as 

                                                                                                      (1) 

And the coefficient  bk are related to unit sample response as    H(n) = bn for 0 ≤ n ≤ M-1,  

                      = 0 otherwise 

We can expand this equation as  Y(n)= b0 x(n) + b1 x(n-1) + …….. + bM-1  x(n-M+1)                             
(2) 

 System is stable only if system produces bounded output for every bounded input. This is 
stability definition for any system. Here h(n)={b0, b1, b2, } of the FIR filter are stable. Thus y(n) 
is bounded if input x(n) is bounded. This means FIR system produces bounded output for 
every bounded input. Hence FIR systems are always stable. 

 

The main features of FIR filter are,  

• They are inherently stable  

• Filters with linear phase characteristics can be designed  

• Simple implementation – both recursive and non-recursive structures possible 

 • Free of limit cycle oscillations when implemented on a finite-word length digital system 

Disadvantages:  

• Sharp cutoff at the cost of higher order 

 • Higher order leading to more delay, more memory and higher cost of implementation 
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Symmetric and Anti-symmetric FIR filters  

Unit sample response of FIR filters is symmetric if it satisfies following condition.  

h(n)= h(M-1-n), for  n=0,1,2…………….M-1 2.  

Unit sample response of FIR filters is Anti-symmetric if it satisfies following condition 

 h(n)= -h(M-1-n)  for  n=0,1,2. 

FIR filters giving out Linear Phase characteristics: Symmetry in filter impulse response will 

ensure linear phase An FIR filter of length M with i/p x(n) & o/p y(n) is described by the 

difference_equation 

 

Alternatively. it can be expressed in convolution form 
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i.e b k = h(k), k=0,1,….M-1 

Choice of Symmetric and anti-symmetric unit sample response  
 
When we have a choice between different symmetric properties, the particular one is picked up 
based on application for which the filter is used. The following points give an insight to this issue. 
• If h(n)=-h(M-1-n) and M is odd, Hr(w) implies that Hr(0)=0 & Hr(π)=0, consequently not suited 
for low pass and high pass filter. This condition is suited in Band Pass filter design. 
 • Similarly if M is even Hr(0)=0 hence not used for low pass filter  
• Symmetry condition h(n)=h(M-1-n) yields a linear-phase FIR filter with non zero response at w 
= 0 if desired. Looking at these points, anti-symmetric properties are not generally preferred 
 
Poles & Zeros of linear phase sequences:  
 
The poles of any finite-length sequence must lie at z=0. The zeros of linear phase sequence must 
occur in conjugate reciprocal pairs. Real zeros at z=1 or z=-1 need not be paired (they form their 
own reciprocals), but all other real zeros must be paired with their reciprocals. Complex zeros on 
the unit circle must be paired with their conjugate (that form their reciprocals) and complex 
zeros anywhere else must occur in conjugate reciprocal quadruples. To identify the type of 
sequence from its pole-
count their number. A type-2 seq must have an odd number of zeros at z=-1, a type-3 seq must 
have an odd number of zeros at z=-1 and z=1, and type-4 seq must have an odd number of zeros 
at z=1. The no. of other zeros if present (at z=1 for type=1 and type-2 or z=-1 for type-1 or type-
4) must be even.  
 
Zeros of Linear Phase FIR Filters:  

 
Consider the filter system function  
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This shows that if z = z1 is a zero then z=z1-1 is also a zero  
The different possibilities: 1. If z1 = 1 then z1 = z1-1 =1 is also a zero implying it is one zero 
 2. If the zero is real and |z|<1 then we have pair of zeros  
3. If zero is complex and |z|=1then and we again have pair of complex zeros.  
4. If zero is complex and |z|≠1 then and we have two pairs of complex zeros 
 
FIR Filter Design Methods  

The various method used for FIR Filer design are as follows  

1. Fourier Series method  

2. Windowing Method  

3. DFT method  

4. Frequency sampling Method. (IFT Method) 

 

Design of an FIR low-pass digital filter 

Assume we require a low-pass filter whose gain-response approximates the ideal 'brick-wall' 
gain-response in Figure 4.2. 

 

 

 

 
 

G() 

/3 /3 0  - 

1 
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If we take the phase-response () to be zero for all , the required frequency-response is:- 
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And by the inverse DTFT, 
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                                                      =   (1/3)sinc(n/3)  for all n. 
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A graph of sinc(x) against x is shown below: 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 

x 

1 2 -1 -2 -3 3 

1 
sinc(x) 

-4 

Main ‘lobe’ 

‘Zero-crossings’ at x =1, 2, 3, etc. 

‘Ripples’ 
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      Fig 4.3a 

 

 

The ideal impulse-response {h[n]} with each sample h[n] = (1/3) sinc(n/3) is therefore as 

follows: 

 

 

 

 

 

 

In Fourier series method, limits of summation index is -∞ to ∞. But filter must have finite 

terms. 

Hence limit of summation index change to -Q to Q where Q is some finite integer. But this 

type of truncation may result in poor convergence of the series. Abrupt truncation of infinite 

series is equivalent 

to multiplying infinite series with rectangular sequence. i.e at the point of discontinuity some 

oscillation may be observed in resultant series. 

2. Consider the example of LPF having desired frequency response Hd (ω) as shown 

in figure. The oscillations or ringing takes place near band-edge of the filter. 

3. This oscillation or ringing is generated because of side lobes in the frequency response 

W(ω) of the window function. This oscillatory behavior is called "Gibbs Phenomenon". 

 

Reading from the graph, or evaluating the formula, we get: 

{h[n]} = { ..., -0.055,  -0.07, 0, 0.14, 0.28, 0.33, 0.28, 0.14, 0, -0.07, -0.055, ... } 

A digital filter with this impulse-response would have exactly the ideal frequency-response we 

applied to the inverse-DTFT i.e. a ‘brick-wall’ low-pass gain response & phase = 0 for all .   But 

{h[n]} has non-zero samples extending from n = - to ,   It is not a finite impulse-response.     It 

is also not causal since h[n] is not zero for all n < 0. It is therefore not realizable in practice. 

Fig. 4.3b 

Ideal impulse response for 

low-pass filter cut-off 

n 

3 6 -3 -6 -9 9 

1/3 
h[n] 

-12 
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To produce a realizable impulse-response of even order M: 

 

 

(2)   Delay resulting sequence by M/2 samples to ensure that the first non-zero sample occurs at 

n = 0. 

The resulting causal impulse response may be realised by setting an = h[n] for n=0,1,2,...,M.  

Taking M=4, for example, the finite impulse response obtained for the /3 cut-off low-pass 

specification is :   {..,0,..,0, 0.14, 0.28, 0.33 , 0.28 , 0.14 , 0 ,..,0,..} 

The resulting FIR filter is as shown in Figure 4.1 with  a0=0.14, a1=0.28, a2=0.33, a3=0.28, 

a4=0.14.   ( Note: a 4th order FIR filter has 4 delays & 5 multiplier coefficients ).   

The gain & phase responses of this FIR filter are sketched below.  

 

 

Clearly, the effect of the truncation of {h[n]} to M/2 and the M/2 samples delay is to produce 

gain and phase responses which are different from those originally specified. 

Considering the gain-response first, the cut-off rate is by no means sharp, and two ‘ripples’ 

appear in the stop-band, the peak of the first one being at about -21dB. 

The phase-response is not zero for all values of  as was originally specified, but is linear phase ( 

i.e. a straight line graph through the origin ) in the pass-band of the low-pass filter  ( -/3 to /3 ) 

with slope arctan( M/2 ) with M = 4 in this case.  This means that (  ) =  ( M/2 ) for |  |  

/3;  i.e. we get a linear phase-response ( for |  |  /3 ) with a phase-delay of M/2 samples. 

It may be shown that the phase-response is linear phase because the truncation was done 

symmetrically about n=0. 

Now let’s try to improve the low-pass filter by increasing the order to ten. Taking 11 terms of  

{ (1 / 3) sinc (n / 3) } we get, after delaying by 5 samples: 

                  {...0,-0.055,-.069, 0,.138,.276,.333,.276,.138,0,-.069,-.055,0,...}. 

 

The signal-flow graph of the resulting 10th order FIR filter is shown below: 
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Notice that the coefficients are again symmetric about the centre one (of value 0.33) and this 

again ensures that the FIR filter is linear phase. 

         ( [-0.055, -0.069, 0, 0.138, 0.276, 0.333, 0.276, 0.138, 0, -0.069, -0.055] ); 

 

 

 

 

 

In may be seen in the gain-response, as reproduced below, that the cut-off rate for the 10th 

order FIR filter is sharper than for the 4th order case, there are more stop-band ripples and, 

rather disappointingly, the gain at the peak of the first ripple after the cut-off remains at about -

21 dB.  This effect is due to a well known property of Fourier series approximations, known as 

Gibb's phenomenon.  The phase-response is linear phase in the pass band ( -/3 to /3 ) with a 

phase delay of 5 samples.  As seen in fig 4.6, going to 20th order produces even faster cut-off 

rates and more stop-band ripples, but the main stop-band ripple remains at about -21dB.  This 

trend continues with 40th and higher orders as may be easily verified.  To improve matters we 

need to discuss ‘windowing’. 

 

 

Fig 4.5: Gain response of tenth order low pass FIR filter with C = /3 

y[n] 
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Fig 4.6: Gain response of 20th order low pass FIR filter with C = /3. 

 

 

 

 

Exercise Problems 

 

Problem 1 : Design an ideal band pass filter with a frequency response: 

 

H d (e 
j

 ) 1 for 






 



 


3

  
 

    

    

  4      4 

 

 0 otherwise 

 

Find the values of h(n) for M = 11 and plot the frequency response. 
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h (n)  1   H (e 
j

 ) e 
jn

 d  

d 

  

2
 

d 

     

  

   



     

            

   1   / 4  3 / 4  

 


    
  e 

jn
 d 

 ʃ 
e 

jn
 d

       

  

2
 3 / 4 

    

    / 4  

 



 

1   3

n  sin 

 

 n 
    

sin 

    

n
        

  n  4   4  

 

truncating to 11 samples we have h(n)  hd (n) 

 for | n | 5  0 otherwise 

 

For n = 0 the value of h(n) is separately evaluated from the basic Integration,  h(0) = 0.5 

 

Other values of h(n) are evaluated from h(n) Expression 

h(1)=h(-1)=0 

h(2)=h(-2)=-0.3183 

        h(3)=h(-3)=0  

h(4)=h(-4)=0 

 

h(5)=h(-5)=0 
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The transfer function of the filter is 

 



188 

 

  N  1) //2 

H (z)  h(0)  [h(n){ z
n
z

n
}] 

 

n1 

 

 0.5  0.3183(z 
2
  z 

2
   )

 

the transfer function of the realizable filter is 

 

H 
'
 (z)  z 

5
 [0.5  0.3183(z 

2
  z 

2
 )] 

 

0.3183z 
3

  0.5z 
5
 0.3183z 

7 

 

the filter coeffients  are 

 

 

 

 

h 
'
 (0)  h' (10)  h' (1)  h' (9)  h' (2) 

h' (8)
 


 
h' (4)

 


 
h' (6)

 


 
0

  

h' (3)  h' (7) 0.3183 

 

h' (5)  0.5 

 

 

The magnitude response can be expressed as 
 

( N 1) / 2 

| H (e 
j

) | a(n) cosn 

n1 

 

comparing this exp with 

 

5 

 

| H (e 
j

) || z 
5

 [h(0)  2h(n) cosn] | 

n1 

We have a(0)=h(0) 
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a(1)=2h(1)=0 

 

a(2)=2h(2)=-0.6366 

 

a(3)=2h(3)=0 

 

a(4)=2h(4)=0 

 

a(5)=2h(5)=0 

 

 

 

The magnitude response function is 

 

|H(e 
jω

)| = 0.5 – 0.6366 cos 2ω which can plotted for various values of  

ω in degrees =[0 20 30 45 60 75 90 105 120 135 150 160 180]; 

 

 

H(e 
jω

)| in dBs= [-17.3 -38.17 -14.8 -6.02 -1.74 0.4346 1.11 0.4346 -1.74 -6.02 -14.8 -38.17 - 
17.3]; 
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Problem 2: Design an ideal low pass filter with a freq response 

H 

 

(e 
j

 )  1 for 
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
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

  

     

    2     

 

 

 

Find the values of h(n) for N =11. Find H(z). Plot the magnitude response 

From the freq response we can determine hd(n), 

     n 
         

 1  / 2  jn  sin  2  

hd (n) 

 

e d 

   

 n  and  n  0 2 n   

   / 2       

 

 

Truncating hd(n) to 11 samples 

 

h(0) = 1/2 h(1)=h(-1)=0.3183  

h(2)=h(-2)=0  

h(3)=h(-3)=0.106 

 

 

h(4)=h(-4)=0 

 

h(5)=h(-5)=0.06366 

 

The realizable filter can be obtained by shifting h(n) by 5 samples to right h‟(n)=h(n-5) 
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h‟(n)= [0.06366, 0, -0.106, 0, 0.3183, 0.5, 0.3183, 0, -0.106, 0, 0.06366]; 

 

H '(z)  0.06366  0.106z 
2

   0.3183z 
4

  0.5z 
5

  0.3183z 
6

   0.106z 
8

   0.06366z 
10 

 

4.5 Windowing Technique:  

FIR filter design using window functions 

Windowing is the quickest method for designing an FIR filter. A windowing function simply 

truncates the ideal impulse response to obtain a causal FIR approximation that is non- causal 

an infinitely long. Smoother window functions provide higher out-of band rejection in the filter 

response. However this smoothness comes at the cost of wider stop band transitions. Various 

windowing method attempts to minimize the width of the main lobe (peak) of the frequency 

response. In addition, it attempts to minimize the side lobes (ripple) of the frequency 

response. 

 The FIR filter design process via window functions can be split into several steps: 

 Defining filter specifications; 

 Specifying a window function according to the filter specifications; 

 Computing the filter order required for a given set of specifications; 

 Computing the window function coefficients; 

 Computing the ideal filter coefficients according to the filter order; 

 Computing FIR filter coefficients according to the obtained window function and ideal 

filter coefficients; 

If the resulting filter has too wide or too narrow transition region, it is necessary to change the 

filter order by increasing or decreasing it according to needs, and after that steps 4, 5 and 6 are 

iterated as many times as needed. 

The final objective of defining filter specifications is to find the desired normalized frequencies 

(ωc, ωc1, ωc2), transition width and stop band attenuation. The window function and filter order 

are both specified according to these parameters. Accordingly, the selected window function 

must satisfy the given specifications. This point will be discussed in more detail in the next 

chapter .After this step, that is, when the window function is known, we can compute the filter 

order required for a given set of specifications. One of the techniques for computing is provided 

in chapter 2.3.When both the window function and filter order are known, it is possible to 

calculate the window function coefficients w[n] using the formula for the specified window 

function. This issue is also covered in the next chapter.After estimating the window function 

coefficients, it is necessary to find the ideal filter frequency samples. The expressions used for 
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computing these samples are discussed in section 2.2.3 under Ideal filter approximation. The 

final objective of this step is to obtain the coefficients hd[n]. Two sequencies w[n] and hd[n] have 

the same number of elements. The next step is to compute the frequency response of designed 

filter h[n] using the following expression: 

Lastly, the transfer function of designed filter will be found by 

transforming impulse response via Fourier transform: 

 

or  via Z-transform If the transition region of designed filter is 

wider than needed, it is necessary to increase the filter order, reestimate the window function 

coefficients and ideal filter frequency samples, multiply them in order to obtain the frequency 

response of designed filter and re estimate the transfer function as well. If the transition region is 

narrower than needed, the filter order can be decreased for the purpose of optimizing hardware 

and/or software resources. It is also necessary to re estimate the filter frequency coefficients 

after that. For the sake of precise estimates, the filter order should be decreased or increased by 

1. 

  

Rectangular Window: Rectangular This is the most basic of windowing methods. It does not 

require any operations because its values are either 1 or 0. It creates an abrupt discontinuity 

that results in sharp roll-offs but large ripples. 

 

 

Hamming Window:This windowing method generates a moderately sharp central peak. Its 

ability to generate a maximally flat response makes it convenient for speech processing 

filtering. 
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Hanning Window: This windowing method generates a maximum flat filter design. 

 

 

Kaiser Window: This windowing method is designed to generate a sharp central peak. It has 

reduced side lobes and transition band is also narrow. Thus commonly used in FIR filter design 
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Type of window  Approx. Transition     Peak 

  width of the main lobe    Side lobe (dB) 

   

Rectangular    4π/M   -13 

   

Bartlett    8π/M   -27 

   

Hanning     8π/M   -32 

   

Hamming    8π/M   -43 

   

Blackman   12π/M   -58 

   

 

Looking at the above table we observe filters which are mathematically simple do not 
offer best characteristics. Among the window functions discussed Kaiser is the most complex 
one in terms of functional description whereas it is the one which offers maximum flexibility 
in the design. 

 

Procedure for designing linear-phase FIR filters using windows: 

 

1. Obtain hd(n) from the desired freq response using inverse FT relation 

2. Truncate the infinite length of the impulse response to finite length with  



195 

 

 

( assuming M odd) choosing proper window 

 

h(n)  hd (n)w(n) where 

 

w(n) is the window function defined for  (M 1) / 2  n  (M 1) / 2 

3. Introduce h(n) = h(-n) for linear phase characteristics 
 

4. Write the expression for H(z); this is non-causal realization 
 

5. To obtain causal realization H‟(z) = z 
-(M-1)/2

 H(z) 

4.6. Summary of ‘windowing’ design technique for FIR filters 

To design an FIR digital filter of even order M, with gain response G() and linear phase, by the 

windowing method, 

1)   Set H(ej) = G() the required gain-response.  This assumes () = 0. 

2)   Inverse DTFT to produce the ideal impulse-response {h[n]}. 

3)   Window to M/2 using chosen window. 

4)   Delay windowed impulse-response by M/2 samples. 

5)   Realize by setting multipliers of FIR filter. 

Instead of obtaining H( ej ) = G(  ), we get e-jM/2G() with G() a distorted version  of 

G() the distortion being due to windowing. 

The phase-response is therefore () = -M/2 which is a linear phase-response with phase-

delay M/2 samples at all frequencies  in the range 0 to .  This is because -() /   =  M/2 for 

all . 

Notice that the filter coefficients, and hence the impulse-response of each of the digital filters 
we have designed so far are symmetric in that h[n] = h[M-n] for all n in the range 0 to M where 
M is the order.  If M is even, this means that h[M/2 - n] = h[M/2 + n] for all n in the range 0 to 
M/2.  The impulse response is then said to be 'symmetric' about sample M/2.  The following 
example illustrates this for an example where M=6 and there are seven non-zero samples within 
{h[n]}:  {… 0, …, 0, 2, -3, 5, 7, 5, -3, 2, 0, …,0, … } 

The most usual case is where M is even, but, for completeness, we should briefly consider the 
case where M is odd.  In this case, we can still say that {h[n]} is 'symmetric about M/2' even 
though sample M/2 does not exist.   The following example illustrates the point for an example 
where M=5 and {h[n]} therefore has six non-zero sample: 

                                       (…, 0,…, 0, 1,  3,  5,  5,  3,  1,  0, …, 0, …} 
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When M is odd, h[(M-1)/2 - n]  =  h[(M+1)/2  + n] for n = 0, 1, …, (M-1)/2.   

It may be shown that FIR digital filters whose impulse-responses are symmetric in this way are 

linear phase.  We can easily illustrate this for either of the two examples just given.  Take the 

second.  Its frequency-response is the DTFT of {h[n]} i.e.  

 

It is also possible to design FIR filters which are not linear phase.   The technique described in 

this section is known as the ‘windowing’ technique or the ‘Fourier series approximation 

technique’.   

 

Exercise Problems 

 

Prob 1: Design an ideal highpass filter with a frequency response: 

 

H 

 

(e j )  1   for 





d 

 

  

4 

 

    

 

 0   |  | 


4



 

using a hanning window with M = 11 and plot the frequency response. 

 

 

hd(1) = hd(-1)=-0.225 
 

hd(2) = hd(-2)= -0.159 
 

hd(3) = hd(-3)= -0.075 
 

hd(4) = hd(-4)= 0 hd(5) 
 

= hd(-5) = 0.045 

 
 

The hamming window function is given by 

 

w (n)  0.5  0.5 cos 
2n 

 

hn
 M 1 

 

 0 otherwise 
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for N  11 

 

w hn (n)  0.5  0.5 cos 
n

5 

 

whn(0) = 1 

 

whn(1) = whn(-1)=0.9045 
whn(2)= whn(-2)=0.655 
whn(3)= whn(-3)= 0.345 
whn(4)= whn(-4)=0.0945 
whn(5)= whn(-5)=0 

 

 ( 
M

 


2
1

 )  n  ( 
M

 


2
1

 )











 5  n  5 

 

 

h(n)= whn(n)hd(n) 

 

h(n)=[0 0 -0.026 -0.104  -0.204 0.75 -0.204 -0.104 -0.026 0 0] 

 

h' (n)  h(n  5) 

 

H ' (z) 0.026z 
2

   0.104z 
3

   0.204z 
4

   0.75z 
5

   0.204z 
6

   0.104z 
7

   0.026z 
8

 
 

Using the equation 
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M 1 

M 3 

M 1 

 

 2  

H r (e 
jw

 )  [h( 

2 

)  2 h(n) cos( 

2 

 n) 

 n0  

 
 

4 

H r (e 
jw

 )  0.75)  2h(n) cos(5  n) 

n0 

 

 

The magnitude response is given by, 

 

|Hr(e 
jω

)| = |0.75 - 0.408cosω - 0.208 cos2ω - 0.052cos3ω| 

 

 

ω in degrees = [0 15 30 45 60 75 90 105 120 135 150 165 180] 

|H(e 
jω

)| in dBs = [-21.72 -17.14 -10.67 -6.05 -3.07 -1.297 -

0.3726 -0.0087 0.052 0.015 0 0 0.017] 
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Prob 2 : Design a filter with a frequency response: 
 

H 

 

(e j)  e  j 3 for 






 

d 

  

   

4 4 

 

     

  

 0 



|  | 

  

  

4 

  

        

 

using a Hanning window with M = 7 

 

Soln: 

The freq resp is having a term e 
–j

 
ω(M-1)/2

 which gives h(n) 
symmetrical about n = M-1/2 = 3 i.e we get a causal sequence. 

 

 

h (n)  
1 

  / 4  

 e  j 3e jn d

d 
2 


/ 4  

 

sin 


 (n  3) 

  



 4  

 (n  3) 

 

this gives h (0)  h (6)  0.075 

d d 

h (1)  h (5)  0.159 

d d 

h (2)  h (4)  0.22 

d d 

h (3)  0.25 
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d 

 

The Hanning window function values are given by 

whn(0) = whn(6) =0 

whn(1)= whn(5) =0.25 

whn(2)= whn(4) =0.75 

whn(3)=1 

 

h(n)=hd(n) whn(n) 

 

h(n)=[0 0.03975 0.165 0.25 0.165 0.3975 0] 

 

 

 

 

 

 

 

 

 

 

 

 

Design of Linear Phase FIR filters using Frequency Sampling method 

 

We know that DFT of a finite duration DT sequence is obtained by sampling FT of the sequence then 
DFT samples can be used in reconstructing original time domain samples if frequency domain 
sampling was done correctly. The samples of FT of h(n) i.e., H(k) are sufficient to recover h(n). 

 

Since the designed filter has to be realizable then h(n) has to be real, hence even 
symmetry properties for mag response |H(k)| and odd symmetry properties for phase response 
can be applied. Also, symmetry for h(n) is applied to obtain linear phase chas. 

Fro DFT relationship we have 

 

N 1 
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h(n)  
1

  H (k )e j 2


kn / N for n  0,1,......N 1 

N 

0 

  

k   

N 1    

H (k )  h(n)e 

 
j
 
2kn

 
/
 
N 

for k  0,1,.........N 1 

n0    

 

 

Also we know H(k) = H(z)|z=e 
j2πkn/N 

 

The system function H(z) is given by 

 

N 1 

H (z)  h(n)z 
n 

n0 

 

Substituting for h(n) from IDFT relationship 

 

 1  z N  N 1   H (k)   

H (z) 

 



     

N 1  e 

j 2kn / N 

z 

1 

 k 0   

 

Since H(k) is obtained by sampling H(e
jω

) hence the method is called Frequency Sampling 
Technique. 

 

Since the impulse response samples or coefficients of the filter has to be real for filter to be 
realizable with simple arithmetic operations, properties of DFT of real sequence can be used. 
The following properties of DFT for real sequences are useful: 

 

H*(k) = H(N-k) 

 

|H(k)|=|H(N-k)| - magnitude response is even 
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θ(k) = - θ(N-k) – Phase response is odd 

 

 

N 1 

h(n)  
1

 H (k )e 
j 2kn / N

 can be rewritten as (for N odd) 

 

N 

k 0 

 

1   N 1   

h(n) H (0) H (k )e j 2kn / N   

N  k 1 

1   N 1 / 2 N 1 

h(n) H (0)   H (k )e 
j
 
2kn

 
/
 
N

   H (k )e j 2kn / N 

N  k 1 k N 1 / 2 

 

 

Using substitution k = N – r or r = N- k in the second 
substitution with r going from now (N- 1)/2 to 1 as k goes from 
1 to (N-1)/2 

 

1  ( N 1) / 2  ( N 1) / 2   

h(n) H (0)   H (k )e j 2


kn / N  H (N  k )e
j2kn/N



 N  k 1  k 1  





1  ( N 1) / 2  ( N 1) / 2   

h(n) H (0)   H (k )e j 2


kn / N  H*(k )e  j 2kn / N   

 N  k 1  k 1   

1  ( N 1) / 2  ( N 1) / 2   

h(n) H (0)   H (k )e j 2kn / N  (H (k )ej 2kn / N )*  

 N  k 1  k 1 



 

1  ( N 1) / 2     

h(n) H (0)  (H (k )e    
j
 
2kn

 
/
 
N

  (H (k )e 
j
 
2kn

 
/
 
N

  ) 
*
    

 N  k 1  



   

1  ( N 1) / 2     
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h(n) H (0)  2   Re( H (k )e j 2


kn / N     

 N  k 1      

Similarly for N even we have      

h(n) 

1  ( N 1) / 2      

 

H (0)  2 Re( H (k)e 
j
 
2kn

 
/
 
N

 

    

     

 N  k 1      

         

 

Using the symmetry property h(n)= h (N-1-n) we can obtain Linear phase FIR filters using the 
frequency sampling technique. 

 

 

Exercise problems 

 

Prob 1 : Design a LP FIR filter using Freq sampling technique having cutoff freq of π/2 

rad/sample. The filter should have linear phase and length of 17. 

 

The desired response can be expressed as 

 

  

(e j )  e 

  M 1   

|  | c H 

d 

 j(  2 
) 
 for 

              

    0    otherwise     

with M  17  and c   / 2    

H 
d 

(e j )  e  j8 for 0     / 2 

              

    0    for / 2    

Selecting k  

2k 



2k 

for k  0,1,......16  M 17 
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H (k)  H 

d 

 (e j


 ) | 

2k 

     

       



     

        

17 

     

              

   

 j 

2k     

2k 

 


H (k )  e 

 

17 
8 

     

         

         for 0  17 2 

   0   for  / 2 
2k 



           17    

 
 

16k 

H (k )  e 
j

 17 

 

 
 

for 0  k 

17 

 

 

4 

 

 0 for 17  k  17 

  4  2 
 

 

 

The range for “k” can be adjusted to be an integer such as 

 

0  k  4 

 

and 5  k  
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The freq response is given by 

 

H (k )  e 

 j 

2k 

8 

for  0  k  4 
 

17   

 0    for 5  k  8  

 

Using these value of H(k) we obtain h(n) from the equation 

 

 

1 

  ( M 1) / 2   

h(n)   (H (0)  2  Re( H (k)e 
j
 
2

 
kn

 
/
 
M 

)) 

 M   k 1   

   

1 

4   

i.e., h(n)  (1  2 Re(e j16k / 17 e j 2kn / 17 )) 

   17 k 1   

    4 

2k (8  n)  ) 

 

h(n)  1 (H (0)  2cos( for  n  0,1,........16 

 17   k 1 17  

 

 

 Even though k varies from 0 to 16 since we considered ω varying between 0 and π/2

 only k values from 0 to 8 are considered

 While finding h(n) we observe symmetry in h(n) such that n varying 0 to 7 and 9 to 16 
have same set of h(n)

 

 

Design of FIR Differentiator 

 

 

Differentiators are widely used in Digital and Analog systems whenever a derivative 
of the signal is needed. Ideal differentiator has pure linear magnitude response in the freq 
range –π to +π. The typical frequency response characteristics is as shown in the below figure. 
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Problem 2: Design an Ideal Differentiator using a) rectangular window and b)Hamming 
window with length of the system = 7. 

 

Solution: 
 

As seen from differentiator frequency chars. It is defined as 

H(e
jω

) = jω between –π to +π 

d 1 


cosn  

h (n)  2 j e 
jn

  d  n  n  and   n  0 

     

 

The hd(n) is an add function with hd(n)=-hd(-n) and hd(0)=0 

 

a) rectangular window 

h(n)=hd(n)wr(n) 

 

h(1)=-h(-1)=hd(1)=-1 

 

h(2)=-h(-2)=hd(2)=0.5 

 

h(3)=-h(-3)=hd(3)=-0.33 
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h‟(n)=h(n-3) for causal 

system thus, 

 

H ' (z)  0.33  0.5z 

 
1
   z 

2
   z 

4
   0.5z 

5
   0.33z 

6
 

 

Also from the equation 

 

( M 3) / 2 M  1  

H r (e 
j

)  2  h(n) sin ( 

2 

 n) 

n0   

 

 

For M=7 and h‟(n) as found above we obtain this as 

 

H r (e 
j

)  0.66 sin 3  sin 2  2 sin 

 

H (e 
j

)  jH r (e 
j

)  j(0.66 sin 3  sin 2  2 sin ) 
 

 

 

b) Hamming window 
h(n)=hd(n)wh(n) 

 

where wh(n) is given by 

 

 

 

w (n)  0.54  0.46 cos 

2n 

 (M 1) / 2  n  (M 1) / 2 
  

h 

(M 1) 

  

   

 

 0  otherwise
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For the present problem 

w (n)  0.54  0.46 cos 
n

 3n3 

h 3 
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The window function coefficients are given by for n=-3 to 
+3 Wh(n)= [0.08 0.31 0.77 1 0.77 0.31 0.08] 

 

Thus h‟(n) = h(n-5) = [0.0267, -0.155, 0.77, 0, -0.77, 0.155, -0.0267] 

 

Similar to the earlier case of rectangular window we can write the freq response of 
differentiator as 

 

H (e 
j

)  jH r (e 
j

)  j(0.0534 sin 3  0.31sin 2 1.54 sin )  

 

 

 

 

 

 

 

 

 

 

 

 

We observe 

 With rectangular window, the effect of ripple is more and transition band width is 

 small compared with hamming window

 With hamming window, effect of ripple is less whereas transition band is more





 




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Design of FIR Hilbert transformer: 

 

Hilbert transformers are used to obtain phase shift of 90 degree. They are also called j operators. 

They are typically required in quadrature signal processing. 

 The Hilbert transformer is very useful when out of phase component (or imaginary part) 
need to be generated from available real component of the signal. 

 

Problem 3: Design an ideal Hilbert transformer using a) rectangular window and 
b) Blackman Window with M = 11 

 

 

 

 

 

 

 

 

 

 

 

Solution: 

 

As seen from freq chars it is defined as   

H 
d 

(e 
j

 )  j       0   

        

   j  0       

The impulse response is given by   

  

1 

0   

(1  cosn) 

 

d  

je 
jn

 d 



 je 
jn

 d] 

 

h (n)  2[ 
 0 

n  n  except   n  0 
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At n = 0  it is hd(0) = 0 and hd(n) is an odd function 

 

a) Rectangular window 
 

h(n) = hd(n) wr(n) = hd(n) for -5 ≥n ≥5 

 

h‟(n)=h(n-5) 

 

h(n)= [-0.127, 0, -0.212, 0, -0.636, 0, 0.636, 0, 0.212, 0, 0.1 

 

4 

H r (e 
j

)  2h(n) sin (5  n) 

n0 

 

H (e 
j

 )  j | H r (e 
j

 ) |j{0.254 sin 5  0.424 sin 3 1.272 sin } 

 

b) Blackman Window 

window function is defined as 

w (n)  0.42  0.5 cos 

n 

 0.08 cos 2n  5  n  5  

b 

5 5  

    

 

 0 otherwise 

 

Wb(n) = [0, 0.04, 0.2, 0.509,0.849,1,0.849, 0.509, 0.2, 0.04,0] for -5≥n≥5 

h‟(n) = h(n-5) = [0, 0, -0.0424, 0, -0.5405, 0, 0.5405, 0, 0.0424, 0, 0] 

 

H (e 
j

)  j[0.0848sin 3 1.0810sin ] 
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FIR Filter Design Optimization 

Remez Exchange Algorithm method:  

An FIR digital filter design technique which is better than the windowing technique, but more 

complicated, is known as the ‘Remez exchange algorithm’.  It was developed by McClelland and 

Parks and is available in MATLAB.  The following MATLAB program designs a 40
th

 order FIR 

low-pass filter whose gain is specified to be unity ( i.e. 0 dB ) in the range 0 to 0.3 

radians/sample and zero in the range 0.4 to .  The gain in the “ transition band ” between 0.3 

and 0.4 is not specified.  The 41 coefficients will be found in array ‘a’.  Notice that, in contrast 

to the gain-responses obtained from the 'windowing' technique, the Remez exchange algorithm 

produces 'equi-ripple' gain-responses (fig 4.14) where the peaks of the stop-band ripples are 

equal rather than decreasing with increasing frequency.  The highest peak in the stop-band will 

be lower than that of an FIR filter of the same order designed by the windowing technique to 

have the same cut-off rate.  Although they are a little difficult to see, there are 'equi-ripple' pass-

band ripples. 

  a = remez (40, [0, 0.3,  0.4,1],[1, 1,  0, 0] ); 

  freqz (a,1,1000,Fs); 

                       

 

Fig 4.14:  Gain response of 40
th

 order FIR lowpass filter designed by “ Remez ”  
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These methods allow much greater flexibility in the filter specification. In general they seek the 
filter coefficients that minimize the error (in some sense) between a desired frequency response 

Hd( e
j
 
ω

 ) and the achieved frequency response H ( e
j
 
ω

 ). The most common optimiza­ tion 

method is that due to Parks and McClellan (1972) and is widely available in software filter 
design packages (including MATLAB) 

The Parks-McClellan method allows 

 

• Multiple pass- and stop-bands. 
 

• Is an equi-ripple design in the pass- and stop-bands, but allows independent weighting of 
the ripple in each band. 

 

• Allows specification of the band edges.  

For the low-pass filter shown above the specification would be 

 

1 − δ1 < H ( e 

j ω 

) < 1 + δ1 in the pass-band 0 < ω ≤ ωc j ω 

−δ2 < H ( e  ) < δ2 in the stop-band ωs  < ω ≤ π. 

where the ripple amplitudes δ1 and δ2 need not be equal. Given these specifications we need to 

determine, the length of the filter M + 1 and the filter coefficients {hn} that meet the 
specifications in some optimal sense. 
 

If M + 1 is odd, and we assume even symmetry 

 

hM −k  = hk k = 0 . . . M/2 

and the frequency response function can be written 

 

 

Let Hd( e
j
 
ω

 ) be the desired frequency response, and define a weighted error 

 

E( e
j
 
ω

 ) = W ( e
j
 
ω

 ) Hd( e
j
 
ω

 ) − H ( e
j
 
ω

 ) 
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where W ( e
j
 
ω

 ) is a frequency dependent weighting function, but by convention let W ( e
j
 
ω

 ) be 
constant across each of the critical bands, and zero in all transition bands. In particular for the 
low-pass design 

= δ2/δ1 in the pass-band 

 

W ( e
j
 
ω

 ) = 1 in the stop-band 

 

=    0 in the transition band. 
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UNIT-V 

Applications of DSP 

Introduction 

Multirate systems have gained popularity since the early 1980s and they are commonly used for 

audio and video processing, communications systems, and transform analysis to name but a few. 

In most applications multirate systems are used to improve the performance, or for increased 

computational efficiency. The two basic operations in a multirate system are decreasing 

(decimation) and increasing (interpolation) the sampling-rate of a signal. Multirate systems are 

sometimes used for sampling-rate conversion, which involves both decimation and interpolation. 

Decimation 

Decimation can be regarded as the discrete-time counterpart of sampling. Whereas in sampling 

we start with a continuous -time signal x(t) and convert it into a sequence of samples x[n], in 

decimation we start with a discrete-time signal x[n ] and convert it into another discrete-time 

signal y[n], which consists of sub-samples of x[n]. Thus, the formal definition of M-fold 

decimation, or down -sampling, is defined. In decimation, the sampling rate is reduced from Fs to 

Fs/M by discarding M – 1 samples for every M samples in the original sequence. 

An anti-aliasing digital filter precedes the down-sampler to prevent aliasing from occurring, due 

to the lower sampling rate. The subject of aliasing in decimated signals is covered in more detail 

in Section 9.4. In Figure 5.2 below, it illustrates the concept of 3-fold decimation i.e. M = 3. 

Here, the samples of x[n] corresponding to n = …, -2, 1, 4,… and n = …, -1, 2, 5,… are lost in 

the decimation process. In general, the samples of x[n] corresponding to n ≠ kM, where k is an 

integer, are discarded in M-fold decimation. In Figure 5.2, it shows samples of the decimated 

signal y[n] spaced three times wider than the samples of x[n]. This is not a coincidence. In real 

time, the decimated signal appears at a slower rate than that of the original signal by a factor of 

M. If the sampling frequency of x[n] is Fs, then that of y[n] is Fs/M. 
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Interpolation 

Interpolation is the exact opposite of decimation. It is an information preserving operation, in 

that all samples of x[n] are present in the expanded signal y[n]. The mathematical definition of L-

fold interpolation is defined by Equation 9.2 and the block diagram notation is depicted in Figure 

9.3. Interpolation works by inserting (L–1) zero-valued samples for each input sample. The 

sampling rate therefore increases from Fs to LFs. With reference to Figure 5.3, the expansion 

process is followed by a unique digital low-pass filter called an anti-imaging filter. Although the 

expansion process does not cause aliasing in the interpolated signal, it does however yield 

undesirable replicas in the signal’s frequency spectrum. We shall see how this special filter is 

necessary to remove these replicas from the frequency spectrum. 

In Figure 5.4 below, it depicts 3-fold interpolation of the signal x[n] i.e. L = 3. The insertion of 

zeros effectively attenuates the signal by L, so the output of the anti-imaging filter must be 

multiplied by L, to maintain the same signal magnitude. 

 

 

 

 

 

 

 

Figure 5.1: Decimation of a discrete-time signal by a factor of 3. 

Frequency Transforms of Decimated and Expanded Sequences 

The analysis of decimation and expansion is better understood by assessing their respective 

frequency spectrums using the Fourier transform. 
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Decimation 

The implications of aliasing caused by decimation are very similar to those in the case of 

sampling a continuous-time signal, in above section. In general, if the Fourier transform of a 

signal, X(θ), occupies the entire bandwidth from [-π, π], then the Fourier transform of the 

decimated signal, X(↓M)(θ), will be aliased. This is due to the superposition of the M shifted and 

frequency-scaled transforms. This is illustrated in Figure 5.5 below, which shows the aliasing 

phenomenon for M = 3. 

. 

 

 

 

 

 

 

Figure 5.2: Interpolation of a discrete-time signal by a factor of 3 
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Figure 5.3: Aliasing caused by decimation; (a) Fourier transform of the original signal; (b) After 

decimation filtering; (c) Fourier transform of the decimated signal. 

In Figure 5.5 it shows the Fourier transform of the original signal. Part (b) shows the signal after 

lowpass filtering. 

In Figure 5.5, it depicts the expanded spectrum after decimation. 

Expansion 

The effect of expansion on a signal in the frequency domain is illustrated in Figure 5.6 below. 

Part (a) shows the Fourier transform of the original signal; part (b) illustrates the Fourier 

transform of the signal with zeros added W(θ); and part shows the Fourier transform of the signal 

after the interpolation filter. It is clearly visible that the shape of the Fourier transform is 

compressed by a factor L in the frequency axis and is also repeated L times in the range of [-π, 

π]. Despite the compression of the signal in the frequency axis, the shape of the Fourier 

transform is still preserved, confirming that expansion does not lead to aliasing. These replicas 

are removed by a digital low-pass filter called an anti-imaging filter, as indicated in Figure 5.3. 
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Figure 5.4: Expansion in the frequency domain of the original signal (a) and the expanded signal 

Sampling-rate Conversion 

A common use of multirate signal processing is for sampling-rate conversion. Suppose a digital 

signal x[n] is sampled at an interval T1, and we wish to obtain a signal y[n] sampled at an interval 

T2. Then the techniques of decimation and interpolation enable this operation, providing the ratio 

T1/T2 is a rational number i.e. L/M. 

Sampling-rate conversion can be accomplished by L -fold expansion, followed by low-pass 

filtering and then M- fold decimation, as depicted in Figure 5.7. It is important to emphasis that 

the interpolation should be performed first and decimation second, to preserve the desired 

spectral characteristics of x[n]. Furthermore by cascading the two in this manner, both of the 

filters can be combined into one single low-pass filter. 
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Figure 5.5: Sampling-rate conversion by expansion, filtering, and decimation. 

An example of sampling-rate conversion would take place when data from a CD is transferred 

onto a DAT. Here the sampling-rate is increased from 44.1 kHz to 48 kHz. To enable this 

process the non-integer factor has to be approximated by a rational number: Hence, the 

sampling-rate conversion is achieved by interpolating by L i.e. from 44.1 kHz to [44.1x160] = 

7056 kHz. 

Then decimating by M i.e. from 7056 kHz to [7056/147] = 48 kHz. 

Multistage Approach 

When the sampling-rate changes are large, it is often better to perform the operation in multiple 

stages, where Mi(Li), an integer, is the factor for the stage i. 

M = M1M2…MI  or  L = L1L2…LI 

An example of the multistage approach for decimation is shown in Figure 9.8. The multistage 

approach allows a significant relaxation of the anti-alias and anti-imaging filters, with a 

consequent reduction in the filter complexity. The optimum number of stages is one that leads to 

the least computational effort in terms of either the multiplications per second (MPS), or the 

total storage requirement (TSR). 
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Figure 5.6: Multistage approach for the decimation process. 

Polyphase Filters 

Potential computational savings can be made within the process of decimation, interpolation, 

and sampling-rate conversion. Polyphase filters is the name given to certain realisations of 

multirate filtering operations, which facilitate computational savings in both hardware and 

software. As an example, the combined low-pass filter in the sampling-rate converter, as 

illustrated in Figure 5.7, can be re-drawn as a realisation structure. In principle, the simplest 

realisation of the low-pass filter is the direct-form FIR structure, as depicted in Figure 5.9. 

However, this type of structure is very inefficient owing to the interpolation process, which 

introduces (L–1) zeros between consecutive points in the signal. If L is large, then the majority 

of the signal components fed into the FIR filter are zero. As a result, most of the multiplications 

and additions are zero i.e. many pointless calculations. Furthermore, the decimation process 

itself implies that only one out of every M output samples is required at the output of the 

sampling-rate converter. Consequently, only one out of every M possible values at the output of 

the filter needs to be computed. This type of structure therefore, leads to much inefficiency 

during the process of sampling-rate conversion. A more efficient realisation structure of the 

sampling-rate converter uses polyphase filters, as illustrated in Figure 5.10. It takes into account 

that after the interpolation process the signal consists of (L–1) zero coefficients, and the 

decimation process implies that only one out of every M samples is required at the output of the 

converter. To make the scheme more efficient, the low-pass filter in Figure 5.9 is replaced by a 

bank of filters arranged in parallel, as illustrated in the efficient realisation. The sampling-rate 

conversion process is undertaken by the multiplexer at the output by selecting every MT/L 

samples. In this example, the efficient realisation is illustrated for a signal which is interpolated 

by L = 3 and decimated by M = 2 samples. 
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Figure 5.7: Realisation structure of sampling-rate conversion. 
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Figure 5.8 Efficient realisation structure for sampling-rate conversion. 

Applications of Multirate DSP 

Multirate systems are used in a CD player when the music signal is converted from digital into 

analogue (DAC). Digital data (16-bit words) are read from the disk at a sampling rate of 44.1 

kHz. If this data were converted directly into an analogue signal, image frequency bands centred 

on multiples of the sampling-rate would occur, causing amplifier overload, and distortion in the 

music signal. To protect against this, a common technique called oversampling is often 

implemented nowadays in all CD players and in most digital processing systems of music 

signals. Figure 5.9 below illustrates a basic block diagram of a CD player and how oversampling 

is utilised. It is customary to oversample (or expand) the digital signal by a factor of x8, followed 

by an interpolation filter to remove the image frequencies. The sampling rate of the resulting 

signal is now increased up to 352.8 kHz. The digital signal is then converted into an analogue 

waveform by passing it through a 14-bit DAC. Then the output from this device is passed 

through an analogue low-pass filter before it is sent to the speakers. 

 

Figure 5.9: Digital to analogue conversion for a CD player using x8 oversampling. 

Figure 9.12 illustrates the procedure of converting a digital waveform into an analogue signal in 

a CD player using x8 oversampling. As an example, Figure (a) illustrates a 20 kHz sinusoidal 

signal sampled at 44.1 kHz, denoted by x[ n]. The six samples of the signal represent the 

waveform over two periods. If the signal x[n] was converted directly into an analogue waveform, 

it would be very hard to exactly reconstruct the 20 kHz signal from this diagram. Now, Figure 

(b) shows x[n] with an x8 interpolation, denoted by y[n]. Figure (c) shows the analogue signal 
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y(t), reconstructed from the digital signal y[n] by passing it through a DAC. Finally, Figure (d) 

shows the waveform of z(t), which is obtained by passing the signal y(t) through an analogue 

low-pass filter. 

 

Figure 5.10: Illustration of oversampling in CD music signal reconstruction. 

The effect of oversampling also has some other desirable features. Firstly, it causes the image 

frequencies to be much higher and therefore easier to filter out. The anti-alias filter specification 

can therefore be very much relaxed i.e. the cut-off frequency of the filter for the previous 

example increases from [44.1 / 2] = 22.05 kHz to [44.1x8 / 2] = 176.4 kHz after the 

interpolation. 

One other attractive feature about oversampling is the effect of reducing the noise power spectral 

density, by spreading the noise power over a larger bandwidth. This is illustrated in Figure 9.13 

and mathematical defined. 

Noise power spectral density= Total power /Bandwidth 
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For both sequences, the total noise power (shaded area in Figure 5.8) remains the same. 

However, as the bandwidth is increased by a factor of x8 because of the interpolation process, it 

causes the level of the noise power spectral density to decrease by a factor of x8, over the whole 

range of the bandwidth. 

 

Figure 5.11: Illustration of noise power spectral density reduction due to oversampling. 

As a consequence of the reduction in the noise power spectral density, it means that the level of 

tolerable noise can be increased by a factor of 8. In terms of the quantisation noise power, q
2
, it 

means that it can now be 8 times greater (or the quantisation step size, q, can be increased by 

√8). This ultimately means that a reduction in the number of bits for the DAC is possible. In 

general, the reduction in the number of bits for the DAC process is given by Equation 9.4 below. 

DAC bit reduction=1/2 log2 (oversample  factor ) 

For the previous example, the DAC bit reduction owing to the x8 oversample factor is 1/2log2(8) 

= 1.5 bits. 

There are in fact more sophisticated oversampled ADCs and DACs that use various feedback 

paths within the system to move most of the quantisation noise into a high frequency out-of-band 

region. Substantially larger savings in the number of bits can then be made, even to one bit only, 

but these techniques are beyond the topic of this course. 

 

Finite Word-length Effects 
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Practical digital filters must be implemented with finite precision numbers and 

arithmetic. As a result, both the filter coefficients and the filter input and output signals 

are in discrete form. This leads to four types of finite wordlength effects. Discretization 

(quantization) of the filter coefficients has the effect of perturbing the location of the 

filter poles and zeroes. As a result, the actual filter response differs slightly from the ideal 

response. This deterministic frequency response error is referred to as coefficient 

quantization error. The use of finite precision arithmetic makes it necessary to quantize 

filter calculations by rounding or truncation. Roundoff noise is that error in the filter 

output that results from rounding or truncating calculations within the filter. As the name 

implies, this error looks like low-level noise at the filter output. Quantization of the filter 

calculations also renders the filter slightly nonlinear. For large signals this nonlinearity is 

negligible and roundoff noise is the major concern. However, for recursive filters with a 

zero or constant input, this nonlinearity can cause spurious oscillations called limit 

cycles. With fixed-point arithmetic it is possible for filter calculations to overflow. The 

term overflow oscillation, sometimes also called adder overflow limit cycle, refers to a 

high-level oscillation that can exist in an otherwise stable filter due to the nonlinearity 

associated with the overflow of internal filter calculations. In this chapter, we examine 

each of these finite wordlength effects. Both fixed-point and floating-point number 

representations are considered. 

Number Representation 

In digital signal processing, (B C 1)-bit fixed-point numbers are usually represented as 

two's-complement signed fractions in the format 

 

The number represented is then 
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where b0 is the sign bit and the number range is −1 X < 1. The advantage of this 

representation is that the product of two numbers in the range from −1 to 1 is another 

number in the same range. 

Floating-point numbers are represented as 

 

where s is the sign bit, m is the mantissa, and c is the characteristic or exponent. To 

make the representation of a number unique, the mantissa is normalized so that 0:5 m < 

1. 

Although floating-point numbers are always represented in the form of (3.2), the way in 

which this representation is actually stored in a machine may differ. Since m 0:5, it is not 

necessary to store the 2
−1

-weight bit of m, which is always set. Therefore, in practice 

numbers are usually stored as 

 

where f is an unsigned fraction, 0 f < 0:5. 

Most floating-point processors now use the IEEE Standard 754 32-bit floating-point 

format for storing numbers. According to this standard the exponent is stored as an 

unsigned integer p where 

 

Therefore, a number is stored as 

 

where s is the sign bit, f is a 23-b unsigned fraction in the range 0 f  < 0:5, and p is an 8-b 
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unsigned integer in the range 0 p 255. The total number of bits is 1 C 23 C 8 D 32. For 

example, in IEEE format 3=4 is written .−1/
0
.0:5 C 0:25/2

0
 so s D 0, p D 126, and f D 

0:25. 

The value X D 0 is a unique case and is represented by all bits zero (i.e., s D 0, f D 0, and 

p D 0). Although the 2
−1

-weight mantissa bit is not actually stored, it does exist so the 

mantissa has 24 b plus a sign bit. 

Fixed-Point Quantization Errors 

In fixed-point arithmetic, a multiply doubles the number of significant bits. For example, 

the product of the two 5-b numbers 0.0011 and 0.1001 is the 10-b number 00:000 110 11. 

The extra bit to the left of the decimal point can be discarded without introducing any 

error. However, the least significant four of the remaining bits must ultimately be 

discarded by some form of quantization so that the result can be stored to 5 b for use in 

other calculations. In the example above this results in 0.0010 (quantization by rounding) 

or 0.0001 (quantization by truncating). When a sum of products calculation is performed, 

the quantization can be performed either after each multiply or after all products have 

been summed with double-length precision. 

We will examine three types of fixed-point quantization—rounding, truncation, and 

magnitude truncation. If X is an exact value, then the rounded value will be denoted Qr 

.X/, the truncated value Qt .X/, and the magnitude truncated value Qmt .X/. If the 

quantized value has B bits to the right of the decimal point, the quantization step size is 

Δ=2
−B 

(3.6) 

Since rounding selects the quantized value nearest the unquantized value, it gives a value 

which is never more than 1=2 away from the exact value. 

The error resulting from quantization can be modeled as a random variable uniformly 

distributed over the appropriate error range. Therefore, calculations with round off error 

can be considered error-free calculations that have been corrupted by additive white 

noise. The mean of this noise for rounding is where Efg represents the operation of 

taking the expected value of a random variable.  
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Floating-Point Quantization Errors 

With floating-point arithmetic it is necessary to quantize after both multiplications and 

additions. The addition quantization arises because, prior to addition, the mantissa of the 

smaller number in the sum is shifted right until the exponent of both numbers is the same. 

In general, this gives a sum mantissa that is too long and so must be quantized. We will 

assume that quantization in floating-point arithmetic is performed by rounding. Because 

of the exponent in floating-point arithmetic, it is the relative error that is important. The 

relative error is defined as 

 

Roundoff Noise 

To determine the roundoff noise at the output of a digital filter we will assume that the 

noise due to a quantization is stationary, white, and uncorrelated with the filter input, 

output, and internal variables. This assumption is good if the filter input changes from 

sample to sample in a sufficiently complex manner. It is not valid for zero or constant 

inputs for which the effects of rounding are analyzed from a limit cycle perspective. 

To satisfy the assumption of a sufficiently complex input, roundoff noise in digital filters 

is often calculated for the case of a zero-mean white noise filter input signal x.n/ of 

variance x
2
. This simplifies calculation of the output roundoff noise because expected 

values of the form Efx.n/x.n − k/g are zero for k 6D0 and give x
2
 when k D 0. This 

approach to analysis has been found to give estimates of the output roundoff noise that 

are close to the noise actually observed for other input signals. Another assumption that 

will be made in calculating roundoff noise is that the product of two quantization errors 

is zero. To justify this assumption, consider the case of a 16-b fixed-point processor. In 

this case a quantization error is of the order 2
−15

, while the product of two quantization 
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errors is of the order 2
−30

, which is negligible by comparison. If a linear system with 

impulse response g.n/ is excited by white noise with mean mx and variance x
2
, the output 

is noise of mean 

 

Therefore, if g.n/ is the impulse response from the point where a roundoff takes place to 

the filter output, the contribution of that roundoff to the variance (mean-square value) of 

the output roundoff noise is given by (3.25) with x
2
 replaced with the variance of the 

roundoff. If there is more than one source of roundoff error in the filter, it is assumed that 

the errors are uncorrelated so the output noise variance is simply the sum of the 

contributions from each source. 

Roundoff Noise in FIR Filters 

The simplest case to analyze is a finite impulse response (FIR) filter realized via the 

convolution summation 

 

When fixed-point arithmetic is used and quantization is performed after each multiply, 

the result of the N multiplies is N -times the quantization noise of a single multiply. For 

example, rounding after each multiply gives, from (3.6) and (3.12), an output noise 

variance of 
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Limit Cycles 

A limit cycle, sometimes referred to as a multiplier round-off limit cycle, is a low-level 

oscillation that can exist in an otherwise stable filter as a result of the nonlinearity 

associated with rounding (or truncating) internal filter calculations. Limit cycles require 

recursion to exist and do not occur in non-recursive FIR filters. 

Overflow Oscillations 

With fixed-point arithmetic it is possible for filter calculations to overflow. This happens 

when two numbers of the same sign add to give a value having magnitude greater than 

one. Since numbers with magnitude greater than one are not representable, the result 

overflows. For example, the two's complement numbers 0.101 (5/8) and 0.100 (4/8) add 

to give 1.001 which is the two's complement representation of −7=8. 

 

The overflow characteristic of two's complement arithmetic can be represented as R{ } where 

 

 

 


