		Software Engineering

UNIT I
· UNIT-I:
· Introduction to Software Engineering:
· A Generic view of process: Software engineering, Process Framework, CMM, Process patterns, process assessment, Personal and Team process, Process Technology, Product and process.
· Process models: Perspective Models, The waterfall model, Incremental process models, Evolutionary process models, Specialized Process Models, The Unified process.
· An Agile View of Process: What is agility, Agile Process, and Agile Process Models

Introduction to Software Engineering
Software engineering is an engineering discipline that is concerned with all aspects of software development and production. We can alternatively view it as a systematic collection of past experience. The experience is arranged in the form of methodologies and guidelines. Software engineers should adopt a systematic and organised approach to their work and use appropriate tools and techniques depending on the problem to be solved, the development constraints and the resources available.

Definition of SOFTWARE ENGINEERING
SE is defined as systematic, disciplined and quantifiable approach for the development, operation and maintenance of software by applying engineering principles.
· Software engineering can be defined as “The establishment and use of sound engineering principles in order to obtain economically software that is reliable and woks efficiently on real time machines.”
[image: http://kiran.gnufied.org/wp-content/uploads/2008/06/se.JPG]

[image: http://blogs.msdn.com/photos/dustin_andrews/images/8501101/original.aspx]

Software is defined as computer programs, procedures, rules and possibly associated documentation and data pertaining to the operation of a computer based systems. “Computer Software” is synonymous with “software product”.

[image:]

Another definition of Software is
· Instructions
· Programs that when executed provide desired function
· Data structures
-Enable the programs to adequately manipulate information
· Documents
-Describe the operation and use of the programs

Characteristics of software
· Software is developed or engineered;
· it is not manufactured in the classical sense.
· Software does not wear out. However it deteriorates due to change.
· Software is custom built rather than assembling existing components.

Categories of Software
· Seven Broad Categories of software are challenges for software engineers
· System software
· Application software
· Engineering and scientific software
· Embedded software
· Product-line software
· Web-applications
· Artificial intelligence software
Legacy software are older programs that are developed decades ago. The quality of legacy software is poor because it has inextensible design, convoluted code, poor and nonexistent documentation, test cases and results that are not achieved.
As time passes legacy systems evolve due to following reasons:
· The software must be adapted to meet the needs of new computing environment or technology.
· The software must be enhanced to implement new business requirements.
· The software must be extended to make it interoperable with more modern systems or database
· The software must be rearchitected to make it viable within a network environment.
Software Myths
Software Myths- beliefs about software and the process used to build it - can be traced to the earliest days of computing. Myths have a number of attributes that have made them insidious. For instance, myths appear to be reasonable statements of fact, they have an intuitive feel, and they are often promulgated by experienced practitioners who “know the score”.

Management Myths
Managers with software responsibility, like managers in most disciplines, are often under pressure to maintain budgets, keep schedules from slipping, and improve quality. A software manager often grasps at belief in a software myth, If the Belief will lessen the pressure.

Myth : We already have a book that’s full of standards and procedures for building 	software. Won’t that provide my people with everything they need to know?
Reality : The book of standards may very well exist, but is it used?
	- Are software practitioners aware of its existence?
	- Does it reflect modern software engineering practice?
	- Is it complete? Is it adaptable?
	- Is it streamlined to improve time to delivery while still maintaining a focus on 		Quality?
In many cases, the answer to these entire question is no.

Myth : If we get behind schedule, we can add more programmers and catch up 	(sometimes called the Mongolian horde concept)
Reality : Software development is not a mechanistic process like manufacturing. In the 	words of Brooks “Adding people to a late software project makes it 	later.” At first, this statement may seem counterintuitive. However, as new people 	are added, people who were working must spend time educating the newcomers, thereby reducing the amount of time spent on productive development effort
Myth : If we decide to outsource the software project to a third party, I can just relax and 	let that firm build it.
Reality : If an organization does not understand how to manage and control software 	project internally, it will invariably struggle when it out sources software project.

Customer Myths
A customer who requests computer software may be a person at the next desk, a technical group down the hall, the marketing /sales department, or an outside company that has requested software under contract. In many cases, the customer believes myths about software because software managers and practitioners do little to correct misinformation. Myths led to false expectations and ultimately, dissatisfaction with the developers.

Myth : A general statement of objectives is sufficient to begin writing programs we can 	fill in details later.
Reality : Although a comprehensive and stable statement of requirements is not always 	possible, an ambiguous statement of objectives is a recipe for disaster. 	Unambiguous requirements are developed only through effective and continuous 	communication between customer and developer.

Myth : Project requirements continually change, but change can be easily 	accommodated because software is flexible.
Reality : It’s true that software requirement change, but the impact of change varies 	with the time at which it is introduced. When requirement changes are requested 	early, cost impact is relatively small. However, as time passes, cost impact grows 	rapidly – resources have been committed, a design framework has been 	established, and change can cause upheaval that requires additional resources 	and major design modification.

Practitioner Myths
Myth(1) Once we write the program and get it to work, our
job is done“
Reality 60% to 80% of all effort expended on software
occurs after it is delivered
Myth(2) Until I get the program running, I have no way of
assessing its quality
Reality Formal technical reviews of requirements analysis
 documents, design documents, and source code
 (more effective than actual testing)
Myth(3) The only deliverable work product for a successful
project is the working program“
Reality Software, documentation, test drivers, test results
Myth(4) Software engineering will make us create voluminous
and unnecessary documentation and will invariably
slow us down
Reality Creates quality, not documents; quality reduces rework and provides software on time and within the budget

A Generic view of process
Process: A set of activities, methods, practices, and transformations that people use to develop and maintain software and the associated products (e.g., project plans, design documents, code, test cases, and user manuals)
Software Engineering - A Layered Technology
Software engineering encompasses a process, the management of activities, technical methods, and use of tools to develop software products (
a
“
quality
”
 focus
process model
methods
tools
)

· The foundation for software engineering is the process layer. It is the glue that holds the technology layers together and enables rational and timely development of computer software.
· Process defines a framework that must be established for effective delivery of software engineering technology.
· The software process forms the basis for management control of software projects and establishes the context in which technical methods are applied, work products (models, documents, data, reports, etc.) are produced, milestones are established, quality is ensured, and change is properly managed.
· Software engineering methods provide the technical “how to’s” for building software. Methods encompass a broad array of tasks that include communication, req. analysis, design, coding, testing and support.
· Software engineering tools provide automated or semi-automated support for the process and the methods.

· When tools are integrated so that info. Created by one tool can be used by another, a system for the support of software development called computer-aided software engineering is established

A PROCESS FRAMEWORK
· Establishes the foundation for a complete software process
· Identifies a number of framework activities applicable to all software projects
· Also include a set of umbrella activities that are applicable across the entire software process.
· Used as a basis for the description of process models

· Generic process activities
· Communication
· Planning
· Modeling
· Construction
· Deployment
·

Communication activity
Planning activity
Modeling activity
· analysis action
· requirements gathering work task
· elaboration work task
· negotiation work task
· specification work task
· validation work task
· design action
· data design work task
· architectural design work task
· interface design work task
· component-level design work task
· Construction activity
· Deployment activity

· Umbrella activities (examples)

1. Software Project Tracking and Control – Assess progress against the project plan
 and maintain schedule.
2. Risk Management – Assesses risk that effect project outcome (or) Quality of
 product.
3. Software Quality Assurance – Activities to ensure software quality.
4. Formal Technical Reviews - Assess work products to uncover and remove errors
 before next action.
5. Software Configuration Management – Manages effects of changes throughout the
 software process.
6. Measurement – Defines and collects process, project, product measures to meet
 customer requirements.
7. Reusability Management – Defines criteria for work product reuse and establishes
 mechanisms to achieve reusable components.
8. Work Product Preparation and Production – Focuses on activities required to
 Create work product such as models, documents, logs, forms and list

CMM Levels.

[image:]

Level 1: Initial.
· A software development organization at this level is characterized by ad hoc activities.
· Very few or no processes are defined and followed.
· Since software production processes are not defined, different engineers follow their own process and as a result development efforts become chaotic.
· The success of projects depends on individual efforts and heroics.
· Since formal project management practices are not followed, under time pressure short cuts are tried out leading to low quality.

Level 2: Repeatable
· At this level, the basic project management practices such as tracking cost and schedule are established.
· Size and cost estimation techniques like function point analysis, COCOMO, etc. are used.
· The necessary process discipline is in place to repeat earlier success on projects with similar applications. Opportunity to repeat a process exists only when a company produces a family of products

Level 3: Defined
· At this level the processes for both management and development activities are defined and documented.
· There is a common organization-wide understanding of activities, roles, and responsibilities.
· The processes though defined, the process and product qualities are not measured.
· ISO 9000 aims at achieving this level.

Level 4: Managed
· At this level, the focus is on software metrics.
· Two types of metrics are collected.
· Product metrics measure the characteristics of the product being developed, such as its size, reliability, time complexity, understandability, etc.
· Process metrics reflect the effectiveness of the process being used, such as average defect correction time, productivity, average number of defects found per hour inspection, average number of failures detected during testing per LOC, etc.
· Quantitative quality goals are set for the products. The software process and product quality are measured and quantitative quality requirements for the product are met.
· Various tools like Pareto charts, fishbone diagrams, etc. are used to measure the product and process quality.
· Thus, the results of process measurements are used to evaluate project performance rather than improve the process.

Level 5: Optimizing
· Process and product measurement data are analyzed for continuous process improvement.
· The process may be fine tuned to make the review more effective.
· The lessons learned from specific projects are incorporated in to the process.
· Continuous process improvement is achieved both by carefully analyzing the quantitative feedback from the process measurements and also from application of innovative ideas and technologies.
· These best practices are transferred throughout the organization.

Key process areas (KPA):
Each maturity level is characterized by several Key Process Areas (KPAs) except for SEI CMM level 1 that includes the areas an organization should focus to improve its software process to the next level.

[image:]

Process Patterns
· Process patterns define a set of activities, actions, work tasks, work products and/or related behaviors
· A template is used to define a pattern
· Typical examples:
· Customer communication (a process activity)
· Analysis (an action)
· Requirements gathering (a process task)
· Reviewing a work product (a process task)
· Design model (a work product)
Process Assessment
· The process should be assessed to ensure that it meets a set of basic process criteria that have been shown to be essential for a successful software engineering.

The generic process framework – Detailed Activities of each phase

· Communication
· Planning
· Modeling
· Construction
· Deployment

Communication Practices
Principles
· Listen
· Prepare before you communicate
· Facilitate the communication
· Face-to-face is best
· Take notes and document decisions
· Collaborate with the customer
· Stay focused
· Draw pictures when things are unclear
· Move on …
· Negotiation works best when both parties win.
· Initiation
· The parties should be physically close to one another
· Make sure communication is interactive
· Create solid team “ecosystems”
· Use the right team structure
· An abbreviated task set
· Identify who it is you need to speak with
· Define the best mechanism for communication
· Establish overall goals and objectives and define the scope
· Get more detailed
· Have stakeholders define scenarios for usage
· Extract major functions/features
· Review the results with all stakeholders

Planning Practices
Principles
· Understand the project scope
· Involve the customer (and other stakeholders)
· Recognize that planning is iterative
· Estimate based on what you know
· Consider risk
· Be realistic
· Adjust granularity as you plan
· Define how quality will be achieved
· Define how you’ll accommodate changes
· Track what you’ve planned
· Initiation
· Ask Boehm’s questions
· Why is the system begin developed?
· What will be done?
· When will it be accomplished?
· Who is responsible?
· Where are they located (organizationally)?
· How will the job be done technically and managerially?
· How much of each resource is needed?
· An abbreviated task set
· Re-assess project scope
· Assess risks
· Evaluate functions/features
· Consider infrastructure functions/features
· Create a coarse granularity plan
· Number of software increments
· Overall schedule
· Delivery dates for increments
· Create fine granularity plan for first increment
· Track progress
Modeling Practices
· We create models to gain a better understanding of the actual entity to be built
· Analysis models represent the customer requirements by depicting the software in three different domains: the information domain, the functional domain, and the behavioral domain.
· Design models represent characteristics of the software that help practitioners to construct it effectively: the architecture, the user interface, and component-level detail.
Analysis Modeling Practices
· Analysis modeling principles
· Represent the information domain
· Represent software functions
· Represent software behavior
· Partition these representations
· Move from essence toward implementation
· Elements of the analysis model
· Data model
· Flow model
· Class model
· Behavior model
Design Modeling Practices
· Principles
· Design must be traceable to the analysis model
· Always consider architecture
· Focus on the design of data
· Interfaces (both user and internal) must be designed
· Components should exhibit functional independence
· Components should be loosely coupled
· Design representation should be easily understood
· The design model should be developed iteratively
· Elements of the design model
· Data design
· Architectural design
· Component design
· Interface design
Construction Practices
· Preparation principles:
· Understand of the problem you’re trying to solve (see communication and modeling)
· Understand basic design principles and concepts.
· Pick a programming language that meets the needs of the software to be built and the environment in which it will operate.
· Select a programming environment that provides tools that will make your work easier.
· Create a set of unit tests that will be applied once the component you code is completed.
· Coding principles: After started writing code
· Constrain your algorithms by following structured programming practice.
· Select data structures that will meet the needs of the design.
· Understand the software architecture and create interfaces that are consistent with it.
· Keep conditional logic as simple as possible.
· Create nested loops in a way that makes them easily testable.
· Select meaningful variable names and follow other local coding standards.
· Write code that is self-documenting.
· Create a visual layout (e.g., indentation and blank lines) that aids understanding.
· Validation Principles: After completing first coding pass:
· Conduct a code walkthrough when appropriate.
· Perform unit tests and correct errors you’ve uncovered.
· Refactor the code
· Testing Principles
· All tests should be traceable to requirements
· Tests should be planned
· The Pareto Principle applies to testing
· Testing begins “in the small” and moves toward “in the large”
· Exhaustive testing is not possible

Deployment Practices
Principles
· Manage customer expectations for each increment
· A complete delivery package should be assembled and tested
· A support regime should be established
· Instructional materials must be provided to end-users
· Buggy software should be fixed first, delivered later

[image:]

Software Process (
Software Process
)

	 PSP				 TSP
Personal Software Process (PSP)
· Recommends five framework activities:

· Planning
· High-level design
· High-level design review
· Development
· Postmortem

· stresses the need for each software engineer to identify errors early and as important, to understand the types of errors

Team Software Process (TSP)

· Each project is “launched” using a “script” that defines the tasks to be accomplished
· Teams are self-directed
· Measurement is encouraged
· Measures are analyzed with the intent of improving the team process

PROCESS MODELS
1. PRESCRIPTIVE MODEL
2. WATERFALL MODEL

CLASSICAL WATERFALL 	 ITERATIVE WATERFALL
 MODEL				MODE

3. INCREMENTAL PROCESS MODELS

 INCREMENTAL MODEL RAD (RAPID APPLICATION DEVELOPMENT MODEL)
4. EVOLUTIONARY PROCESS MODEL
	
	
PROTOTYPING MODEL SPIRAL MODEL CONCURRENT DEVELOPMENT MODEL
5. SPECIALISED PROCESS MODELS

CONCEPTUAL BASE FORMAL METHOD ASPECT ORIENTED
DEVELOPMENT 							S/W DEVELOPMENT

6. THE UNIFIED PROCESS

Process Models
Life cycle model
A software life cycle model also called process model is a descriptive and diagrammatic representation of the software life cycle. A life cycle model represents all the activities required to make a software product transit through its life cycle phases. It also captures the order in which these activities are to be undertaken. In other words, a life cycle model maps the different activities performed on a software product from its inception to retirement.
Different life cycle models may map the basic development activities to phases in different ways. Thus, no matter which life cycle model is followed, the basic activities are included in all life cycle models though the activities may be carried out in different orders in different life cycle models. During any life cycle phase, more than one activity may also be carried out.
1. Classical Waterfall Model
2. Iterative Waterfall Model
3. Prototyping Model
4. Incremental Model
5. RAD Model
6. Spiral Model

1. Classical Waterfall Model

· Oldest software lifecycle model and best understood by upper management
· Used when requirements are well understood and risk is low
· Work flow is in a linear (i.e., sequential) fashion
· Used often with well-defined adaptations or enhancements to current software
· Begins with customer specification of Requirements and progresses through planning, modeling, construction and deployment

The framework activities of the Waterfall model include:
1. Communication: It involves heavy communication and collaboration with customer and other stakeholders. It encompasses requirements gathering and related activities.

2. Planning: It plans for Software Engineering work that follows. It describes technical tasks to be conducted, resources that will be required, likely risks, work products to be produced and a work schedule.

3. Modeling: This activity focuses on creation of models that allow stakeholders (customer, developer) to better understand software requirements and design that will achieve requirements.

4. Construction: It combines code generation and testing to uncover errors in the code. (Manual, automated actions).

5. Deployment: The software (completed/partial increment) is delivered to the customer for evaluation and feedback of it.

Advantages:
· It is very simple
· It divides the large task of building a software system into a seri es of clearly divided phases.
· Each phase is well documented
Problems
· Doesn't support iteration, so changes can cause confusion
· Difficult for customers to state all requirements explicitly and up front
· Requires customer patience because a working version of the program doesn't occur until the final phase
· Problems can be somewhat alleviated in the model through the addition of feedback loops
· Problems:
· Real projects rarely follow the sequential flow.
· It’s often difficult for customer to state all requirements explicitly.
· Working version of program(s) will not be available until late in project time-span. So, customer must have patience.

A variation in the representation of the waterfall model is called the V-model. The V-model depicts the relationship of quality assurance actions to the actions associated with communication, modeling, and early construction activities. As software team moves down the left side of the V, basic problem requirements are refined into progressively more detailed and technical representations of the problem and its solution. Once code has been generated, the team moves up the right side of the V, essentially performing a series of tests (quality assurance actions) that validate each of the models created as the team moved down the left side. In reality, there is no fundamental difference between the classic life cycle and the V-model. The V-model provides a way of visualizing how verification and validation actions are applied to earlier engineering work.

[image:]

2. Iterative Waterfall Model

INCREMENTAL PROCESS MODELS
“It divides the software development process into certain number of increments with each increment comprising 5 phases of waterfall model”. Each linear sequence produces “deliverable increments” of software.
First increment is often a core product i.e., basic requirements are addressed, supplementary features are not delivered. The core product is used and evaluated by the customer, based on that plans for next increment development. This process is repeated till complete product is produced.
1. Incremental Model

The framework activities of the Incremental Process model include:
1. Communication: It involves heavy communication and collaboration with customer and other stakeholders. It encompasses requirements gathering and related activities.
2. Planning: It plans for Software Engineering work that follows. It describes technical tasks to be conducted, resources that will be required, likely risks, work products to be produced and a work schedule.
3. Modeling: This activity focuses on creation of models that allow stakeholders (customer, developer) to better under software requirements and design that will achieve requirements.
4. Construction: It combines code generation and testing to uncover errors in the code.
5. Development: The software (completed/partial increment) is delivered to the customer for evaluation and feedback of it
Advantages:
· Technical risks reduced, with each increment.
· When team size is small, it is the correct choice.
· Customer can expect a core product in short time-span.

2. Rapid Application Model (RAD)

· RAD is a high speed adaptation of linear sequential model. It is characterized by a very short development life cycle, in which the objective is to accelerate the development.
· The RAD model follows a component based approach.
· In this approach individual components developed by different people are assembled to develop a large software system.

[image:]

The RAD model consist of the following phases

· Business Modeling:
 In this phase, define the flow of information within the organization, so that it
 covers all the functions. This helps in clearly understand the nature, type
 source and process of information.
· Data Modeling:
 In this phase, convert the component of the information flow into a set of data
 objects. Each object is referred as an Entity.
· Process Modeling:
 In this phase, the data objects defined in the previous phase are used to
 depict the flow of information . In addition adding , deleting, modifying and
 retrieving the data objects are included in process modeling.
· Application Designing:
 In this phase, the generation of the application and coding take place. Using
 fourth generation programming languages or 4 GL tools is the preferred choice
 for the software developers.
· Testing:
 In this phase, test the new program components.

The RAD has following advantages
· Due to emphasis on rapid development , it results in the delivery of fully functional project in short time period.
· It encourages the development of program component reusable.
The RAD has following disadvantages

· It requires dedication and commitment on the part of the developers as well as the client to meet the deadline. If either party is indifferent in needs of other, the project will run into serious problem.
· For large but scalable projects It is not suitable as RAD requires sufficient human resources to create the right number of RAD teams.
· RAD requires developers and customers who are committed to rapid fire activities
· Its application area is restricted to system that are modular and reusable in nature.
· It is not suitable for the applications that have a high degree of technical risk.
· For large but scalable projects, RAD requires sufficient human resources to create the right number of RAD teams.
· RAD requires developers and customers who are committed to rapid fire activities.
· Not all types of applications are appropriate for RAD.
· RAD is not appropriate when technical risks are high.

Evolutionary Process Models:
1. Prototype Models:
A prototype is a toy implementation of the system. A prototype usually exhibits limited functional capabilities, low reliability, and inefficient performance compared to the actual software. A prototype is usually built using several shortcuts. The shortcuts might involve using inefficient, inaccurate, or dummy functions. The shortcut implementation of a function, for example, may produce the desired results by using a table look-up instead of performing the actual computations.
Need for a prototype in software development
There are several uses of a prototype. An important purpose is to illustrate the input data formats, messages, reports, and the interactive dialogues to the customer. This is a valuable mechanism for gaining better understanding of the customer’s needs:

• how the screens might look like
• how the user interface would behave
• how the system would produce outputs

Another reason for developing a prototype is that it is impossible to get the perfect product in the first attempt. Many researchers and engineers advocate that if you want to develop a good product you must plan to throw away the first version. The experience gained in developing the prototype can be used to develop the final product.

· Follows an evolutionary and iterative approach
· Used when requirements are not well understood
· Serves as a mechanism for identifying software requirements
· Focuses on those aspects of the software that are visible to the customer/user
· In this model, product development starts with an initial requirements gathering phase.
· A quick design is carried out and the prototype is built.
· The developed prototype is submitted to the customer for his evaluation.
· Based on the customer feedback, the requirements are refined and the prototype is suitably modified.
· This cycle of obtaining customer feedback and modifying the prototype continues till the customer approves the prototype.
· The actual system is developed using the iterative waterfall approach. However, in the prototyping model of development, the requirements analysis and specification phase becomes redundant as the working prototype approved by the customer becomes redundant as the working prototype approved by the customer becomes an animated requirements specification.

Disadvantages
· The customer sees a "working version" of the software, wants to stop all development and then buy the prototype after a "few fixes" are made
· Developers often make implementation compromises to get the software running quickly (e.g., language choice, user interface, operating system choice, inefficient algorithms)
· Lesson learned
· Define the rules up front on the final disposition of the prototype before it is built
· In most circumstances, plan to discard the prototype and engineer the actual production software with a goal toward quality
·

2. Spiral Model

· Invented by Dr. Barry Boehm in 1988
· Follows an evolutionary approach
· Used when requirements are not well understood and risks are high
· Inner spirals focus on identifying software requirements and project risks; may also incorporate prototyping
· Outer spirals take on a classical waterfall approach after requirements have been defined, but permit iterative growth of the software
· Operates as a risk-driven model…a go/no-go decision occurs after each complete spiral in order to react to risk determinations
· Requires considerable expertise in risk assessment
· Serves as a realistic model for large-scale software development

[image:]

First quadrant (Objective Setting)
• During the first quadrant, it is needed to identify the objectives of the phase.
• Examine the risks associated with these objectives.
Second Quadrant (Risk Assessment and Reduction)
• A detailed analysis is carried out for each identified project risk.
• Steps are taken to reduce the risks. For example, if there is a risk that the requirements are inappropriate, a prototype system may be developed.
Third Quadrant (Development and Validation)
• Develop and validate the next level of the product after resolving the identified risks.
Fourth Quadrant (Review and Planning)
• Review the results achieved so far with the customer and plan the next iteration around the spiral.
• Progressively more complete version of the software gets built with each iteration around the spiral.

[image:]

Spiral Model Advantages
· Focuses attention on reuse options.
· It is a realistic approach to the development of large scale systems and software.
· Focuses attention on early error elimination.
· Puts quality objectives up front.
· Integrates development and maintenance.
· Provides a framework for hardware/software development.

Disadvantages:
· Contractual development often specifies process model
· and deliverables in advance.
· Requires risk assessment expertise.

Circumstances to use spiral model
The spiral model is called a meta model since it encompasses all other life cycle models. Risk handling is inherently built into this model. The spiral model is suitable for development of technically challenging software products that are prone to several kinds of risks. However, this model is much more complex than the other models – this is probably a factor deterring its use in ordinary projects.
3. Concurrent Development Model:
It is also called as “Concurrent Engineering”. This model is represented schematically as a series of framework activities, Software Engineering actions and tasks, and their associated states concurrently. It strives to make all software development activities to be concurrently implemented.
Ex: “Modeling” activity for spiral model is accomplished by invoking prototyping and/or analysis Modeling and specification and design.
[image:]
All activities (communication/modeling/construction etc) exist concurrently but reside in different states. State is an externally observable mode of behavior). For example, early in a project, the communication activity has completed its first iteration and exists in the awaiting changes state. Modeling activity which was in none state will now move to under development state.
· This model defines a series of events which will trigger transition from state to state for each of Software Engineering activities, actions/tasks.

Advantages:

· Applicable to all types of software development, provides accurate picture of current state of a project.
· The software engineering activities, tasks and actions are defined as a network of activities, rather than sequence of events.

Evolutionary Models Drawbacks:

· Prototyping poses a problem to project planning because of uncertain number of cycles required to construct product.
· Do not establish maximum speed of evolution.
· May not give flexibility and extensibility for the software process.
Comparison of different life-cycle models
The classical waterfall model can be considered as the basic model and all other life cycle models as embellishments of this model. However, the classical waterfall model can not be used in practical development projects, since this model supports no mechanism to handle the errors committed during any of the phases.
This problem is overcome in the iterative waterfall model. The iterative waterfall model is probably the most widely used software development model evolved so far. This model is simple to understand and use. However, this model is suitable only for well-understood problems; it is not suitable for very large projects and for projects that are subject to many risks.
The prototyping model is suitable for projects for which either the user requirements or the underlying technical aspects are not well understood. This model is especially popular for development of the user-interface part of the projects.
The Incremental approach is suitable for large problems which can be decomposed into a set of modules for incremental development and delivery. This model is also widely used for object-oriented development projects. Of course, this model can only be used if the incremental delivery of the system is acceptable to the customer.
The spiral model is called a meta model since it encompasses all other life cycle models. Risk handling is inherently built into this model. The spiral model is suitable for development of technically challenging software products that are prone to several kinds of risks. However, this model is much more complex than the other models – this is probably a factor deterring its use in ordinary projects.
The different software life cycle models can be compared from the viewpoint of the customer. Initially, customer confidence in the development team is usually high irrespective of the development model followed. During the lengthy development process, customer confidence normally drops off, as no working product is immediately visible.
Specialized Process Models
1. Component-based Development Model
· The component-based development model incorporates many of the characteristics of the spiral model.
· It is evolutionary in nature
· The component-based development model constructs applications from prepackaged software components.
· Modeling and construction activities begin with the identification of candidate
components. These components can be designed as either conventional software modules or object-oriented classes or packages16 of classes

· Consists of the following process steps
· Available component-based products are researched and evaluated for the application domain in question
· Component integration issues are considered
· A software architecture is designed to accommodate the components
· Components are integrated into the architecture
· Comprehensive testing is conducted to ensure proper functionality
· Relies on a robust component library
· Capitalizes on software reuse, which leads to documented savings in project cost and time

2. Formal Methods Model

· Encompasses a set of activities that leads to formal mathematical specification of computer software
· Enables a software engineer to specify, develop, and verify a computer-based system by applying a rigorous, mathematical notation
· Ambiguity, incompleteness, and inconsistency can be discovered and corrected more easily through mathematical analysis
· Offers the promise of defect-free software
· Used often when building safety-critical systems

Challenges of Formal Methods

· Development of formal methods is currently quite time-consuming and expensive
· Because few software developers have the necessary background to apply formal methods, extensive training is required
· It is difficult to use the models as a communication mechanism for technically unsophisticated customers

3. Aspect-Oriented Software Development (AOSD):

· As modern computer based systems become more sophisticated and complex, some concerns (security, fault tolerance, memory management etc) span the entire architecture. When concern cut across multiple system functions, features and information, they are referred as crosscutting concerns. Aspectual Requirements define those crosscutting concerns that have impact across the software architecture.
· AOSD, often referred to as Aspect-Oriented Programming (AOP), is a relatively new software engineering paradigm which provides a process for defining, specifying, designing and constructing aspects (crosscutting concerns).
· Presently there is no distinct Aspect-Oriented Process. If such an approach is developed, then it must integrate the characteristics of both spiral and concurrent model, because of their evolutionary and parallel natures respectively.

The Unified Process

· Birthed during the late 1980's and early 1990s when object-oriented languages were gaining wide-spread use
· Many object-oriented analysis and design methods were proposed; three top authors were Grady Booch, Ivar Jacobson, and James Rumbaugh
· They eventually worked together on a unified method, called the Unified Modeling Language (UML)
· UML is a robust notation for the modeling and development of object-oriented systems
· UML became an industry standard in 1997
· However, UML does not provide the process framework, only the necessary technology for object-oriented development
· Booch, Jacobson, and Rumbaugh later developed the unified process, which is a framework for object-oriented software engineering using UML
· Draws on the best features and characteristics of conventional software process models
· Emphasizes the important role of software architecture
· Consists of a process flow that is iterative and incremental, thereby providing an evolutionary feel
· Consists of five phases: inception, elaboration, construction, transition, and production

Inception Phase

· Encompasses both customer communication and planning activities of the generic process
· Business requirements for the software are identified
· A rough architecture for the system is proposed
· A plan is created for an incremental, iterative development
· Fundamental business requirements are described through preliminary use cases
· A use case describes a sequence of actions that are performed by a user

Work Products:
1) Vision Documents 5) Initial Risk Assessment
2) Initial use-case model 6) Project Plan [Phases and Interaction]
3) Initial Project Glossary 7) Business Model (if necessary)
4) Initial Business case 8) One or more Prototypes

Elaboration Phase

· Encompasses both the planning and modelling activities of the generic process
· Refines and expands the preliminary use cases
· Expands the architectural representation to include five views
· Use-case model
· Analysis model
· Design model
· Implementation model
· Deployment model
· Often results in an executable architectural baseline that represents a first cut executable system
· The baseline demonstrates the viability of the architecture but does not provide all features and functions required to use the system
Work Products:
1) Use case Model
2) Supplementary Requirements
3) Analysis Model
4) Software Architecture Prototype
5) Executable Architecture Description
6) Preliminary Design Model
7) Revised Risk List
8) Project plan, includes
a) Iteration Plan
b) Adapted workflow
c) Milestones
d) Technical work products
9) Preliminary User Manual

Construction Phase

· Encompasses the construction activity of the generic process
· Uses the architectural model from the elaboration phase as input
· Develops or acquires the software components that make each use-case operational
· Analysis and design models from the previous phase are completed to reflect the final version of the increment
· Use cases are used to derive a set of acceptance tests that are executed prior to the next phase
·
Work Products:
1) Design Model.
2) Software Components
3) Integrated Software Increment
4) Test Plan and Procedure.
5) Test Cases
6) Support Document
a. User Manuals
b. Installation Manuals
c. Description of Current Increment

Transition Phase
· Encompasses the last part of the construction activity and the first part of the deployment activity of the generic process
· Software is given to end users for beta testing and user feedback reports on defects and necessary changes
· The software teams create necessary support documentation (user manuals, trouble-shooting guides, installation procedures)
· At the conclusion of this phase, the software increment becomes a usable software release

Work Products:
1) Delivered software increment
2) General User Feedback
3) Beta Test Report

Production Phase

· Encompasses the last part of the deployment activity of the generic process
· On-going use of the software is monitored
· Support for the operating environment (infrastructure) is provided
· Defect reports and requests for changes are submitted and evaluated

[image:][image:]

Agile Processing

What is Agility

[image:]
Agility

· Effective response to change
· Effective communication among all stakeholders
· Drawing the customer onto the team; eliminate the “us and them” attitude
· Organizing a team so that it is in control of the work performed
· Rapid, incremental delivery of software

Q: What is Agility?
Ans: Agility is dynamic, content specific, aggressively change and growth oriented. Agile software is highly valued software. Agile team is a nimble team able to respond to changes appropriately.

The Agile Alliance defines 12 principles to achieve agility:

1. Our highest priority is to satisfy customer through early and continuous delivery of valuable software.
2. Welcome changing requirements, even later in development. Agile processes harness change for customer’s competitive advantage.
3. Deliver working software frequently, from couple of weeks to months.
4. Business people and developers must daily work together throughout the project.
5. Build projects around motivated individuals.(Give them support environment and trust to get the job done).
6. Most efficient and effective method of conveying information in a development team is face-to face conversation.
7. Working software is primary measure of progress.
8. Agile processes promote sustainable development. (Users, sponsors, developers should maintain a constant pace).
9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity is essential. (Art of maximum amount of work not done).
11. Self-organizing teams are required for best architectures, requirements and designs.
12. At regular intervals, team will tune and adjust its behavior to become more effective.

Q: What is an Agile Process?

Ans: Any Agile software process has 3 assumptions about software projects:
i. It is difficult to predict in advance which software requirements, customer priorities will change and which will persist.
ii. For many types of software, design and construction are interleaved (performed together). It is difficult to predict how much design is necessary before construction is used.
iii. Analysis, design, construction and testing are not as predictable as we might like.

Q: How do we create a process that can manage unpredictability?

Ans: Agile process must be adaptable, to have process adaptability. An agile software process must adapt incrementally. Customer feedback will make the process effective. Software increments must be delivered in short time periods, so that adaption keeps pace with change (unpredictability).

Human Factors: Agile development focuses on the talents and skills of individuals, modeling the process to specific people and teams.

Traits that must exist among people of Agile Team:

1. Competence: It encompasses innate talent, specific software knowledge of the process which the team applies. Skill and knowledge of process should be taught to all agile team members.
2. Common Focus: Although, Agile team members perform different tasks and bring different skills to be project, all should be focused on one goal-to deliver a working software increment to the customer within the time promised.
3. Collaboration: Team members must collaborate with one another, with customer and with business managers, as Software Engineering is
I. Assessing, analysing, using information that is communicated to software team.
II. Creating information that will help customer.
III. Building information (DBs) that provides business value for customer.
IV. Decision Making Ability: Agile team is given autonomy decision making authority for both technical and project issues.
5. Fuzzy Problem-Solving Ability: Agile team will continually have to deal with ambiguity and changes. Lesson learned any problem solving activity benefits the team later in the project.
6. Mutual Trust and Respect: Agile team should be a “Jelled” team. Jelled team exhibits the trust and respect requirement for the project.
7. Self-Organisation: It implies 3 things:
a) Agile team organises itself for the work to be done.
b) Agile team organises the process to best accommodate its environment.
c) Agile team organises the work schedule to achieve project delivery.

Agile Process Models

1. Extreme Programming (XP)
2. Adaptive Software Development (ASD)
3. Dynamic Systems Development Method (DSDM)
4. Scrum
5. Crystal
6. Feature Driven Development (FDD)
7. Agile Modeling (AM)

1. Extreme Programming (XP)

· The most widely used agile process, originally proposed by Kent Beck [BEC99]
· XP uses an object-oriented approach as its preferred development paradigm
· Defines four (4) framework activities
· Planning
· Design
· Coding
· Testing

XP Planning
· Begins with the creation of “user stories” and then placed on an index card.
· The customer assigns a value to the story based on the overall business value of the function.
· Agile team assesses each story and assigns a cost “measured in development weeks.”
· Stories are grouped to form a deliverable increment
· A commitment is made on delivery date

Once a commitment is made on delivery date, the XP team orders the stories that will be developed in one of three ways:

1. All stories will be implemented immediately within a few weeks.
2. The stories with the highest value will be moved up in the schedule and implemented first.
3. The riskiest stories will be moved up in the schedule and implemented first.
· After the first increment (project release), “project velocity” is used to help define subsequent delivery dates for other increments.
· Project velocity is the number of customer stories implemented during the first release
XP – Design
· Follows the KIS (keep it simple) principle
· Encourage the use of CRC (class -responsibility - collaborator) cards
· For difficult design problems, suggests the creation of “spike solutions”—a design prototype that is implemented and evaluated
· Encourages “refactoring”—an iterative refinement of the internal program design that controls the code modifications by suggesting small design changes that may improve the design.
· Design occurs both before and after coding commences

XP – Coding
· Recommends the construction of a series of unit tests for each of the stories before coding commences
· Encourages “pair programming”
· Mechanism for real-time problem solving and real-time quality assurance
· Keeps the developers focused on the problem at hand
· Needs continuous integration with other portions (stories) of the s/w, which provides a “smoke testing” environment

XP – Testing
· Unit tests should be implemented using a framework to make testing automated. This encourages a regression testing strategy.
· Integration and validation testing can occur on a daily basis
· Acceptance tests, also called customer tests, are specified by the customer and executed to assess customer visible functionality
· Acceptance tests are derived from user stories
Advantages

· Customer focus increase the chance that the software produced will actually meet the needs of the users
· The focus on small, incremental release decreases the risk on your project:
· by showing that your approach works and
· by putting functionality in the hands of your users, enabling them to provide timely feedback regarding your work.
· Continuous testing and integration helps to increase the quality of your work
· XP is attractive to programmers who normally are unwilling to adopt a software process, enabling your organization to manage its software efforts better.

Disadvantages
· XP is geared toward a single project, developed and maintained by a single team.
· XP is particularly vulnerable to "bad apple" developers who:
· don't work well with others
· who think they know it all, and/or
· who are not willing to share their "superior” code
· XP will not work in an environment where a customer or manager insists on a complete specification or design before they begin programming.
· XP will not work in an environment where programmers are separated geographically.
· XP has not been proven to work with systems that have scalability issues (new applications must integrate into existing systems).

Adaptive Software Development

[image:]
· Originally proposed by Jim Highsmith
· ASD — distinguishing features
· Mission-driven planning
· Component-based focus
· Uses “time-boxing”
· Explicit consideration of risks
· Emphasizes collaboration for requirements gathering
· Emphasizes “learning” throughout the process
· Speculation: An adaptive cycle-planning is conducted where it uses the customer’s mission statement, project constraints (delivery dates, user description) and basic requirements.
· Collaboration: People working together must trust one another to:
1. criticize without animosity
2. assist without resentment
3. work as hard or harder as they do
4. have the skill set to contribute to the work at hand
5. communicate problems or concerns in a way that leads to effective action
· Learning
Learning will help them to improve their level of real understanding.
· Software development may often over estimate their own understanding and learning will help them to improve their level of real understanding. ASD teams learn in 3 ways:
· a) Focus Groups: The customer lends users provide feedback on software increments that are being delivered. This provides direct indication of whether the product is satisfying business needs or not.
· b) Formal Technical Reviews (FTRS): ASD team members review the software components that are developed, improving quality and learning as they proceed.
· c) Post-mortems: ASD team becomes introspective (self thinking) addressing its performance and process. (With the intent of learning and then improving its approach).

Dynamic Systems Development Method
· Dynamic System Development Method is an agile S/W development approach that provides a framework for building and maintaining systems which meet tight time constraints through the use of incremental prototyping in a controlled project environment.
· Promoted by the DSDM Consortium
· DSDM—distinguishing features
· Nine guiding principles
· Active user involvement is imperative.
· DSDM teams must be empowered to make decisions.
· The focus is on frequent delivery of products.
· Fitness for business purpose is the essential criterion for acceptance of deliverables.
· Iterative and incremental development is necessary to converge on an accurate business solution.
· All changes during development are reversible.
· Requirements are baselined at a high level
· Testing is integrated throughout the life-cycle.

It defines three different iterative cycles preceded by two additional life cycles activities:
DSDM lifecycle defines 3 different iterative cycles, preceded by 2 additional life cycle activities.

1. Feasibility Study: Establishes business requirements and application constraints and then assesses whether the application is viable candidate for DSDM process.
2. Business Study: Establishes functional information requirements that allow the application to provide business value. Defines basic application architecture and identifies maintainability requirements for the application.
3. Functional Model Iteration: Produces a set of incremental prototypes that demonstrate functionality for the customer. It helps in gathering additional requirements from user feedback who exercises the prototype.
4. Design and Build Iteration: Revisits prototypes built during functional model iteration to ensure that they provide business value for end-users. Often occurs concurrently with Functional Model Iteration.
5. Implementation: Places latest software increment into operational environment. It should be noted that
a) Increment may not be 100% complete.
b) Changes may be requested as increment is put in place.

In both cases, DSDM development work continues by returning to Functional Model Iteration activity.
 DSDM can be combined with XP to provide a combination approach that defines a solid process model.

NOTE:
Refactoring is the process of changing a software system in such a way that it does not
alter the external behavior of the code yet improves the internal structure. It is a disciplined way to clean up code [and modify/simplify the internal design] that minimizes the chances of introducing bugs. In essence, when you refactor you are improving the design of the code after it has been written.

[image:]
[image:][image:]

Development work is partitioned into “packets”
· Testing and documentation are on-going as the product is constructed
· Work occurs in “sprints framework activities” and is derived from a “backlog requirements that provide business values” of existing requirements
· Meetings are very short and sometimes conducted without chairs
· “Demos” are delivered to the customer with the time-box allocated

Development Activities of SCRUM

[image:]
[image:]
[image:]
[image:]
[image:]
Crystal

· Proposed by Cockburn and Highsmith
· Crystal—distinguishing features
· Actually a family of process models that allow “maneuverability” based on problem characteristics
· Face-to-face communication is emphasized
· Suggests the use of “reflection workshops” to review the work habits of the team

8. Feature Driven Development (FDD)

[image:]
[image:]
	AGILE MODELING (AM): There are many situations in which software engineers must build large, business critical systems. Scope and complexity of such systems must be modeled so that,
· All constituencies can better understand what to be accomplished.
· Problem can be effectively partitioned among Software Engineers.
· Quality can be assessed at every step of system.

Agile Modeling is a practice-based methodology for effective Modeling and documentation of software-based systems. Agile Modeling is a collection of values, principles and practices for modeling effective software.
An Agile team must be courageous to reject any requirement, design and need to re-factor. It must have all answers, business experts and other stakeholders should be respected and embraced.
Modeling principles that make Agile Modeling unique are:
1) Model with a Purpose: A software engineer who uses AM should have a specific goal in mind before creating the model. Once a goal of model is identified, type of notation and level of details required will be more obvious.
2) Use Multiple Models: Agile Modeling suggests that each model should present a different aspect of the system and only models provide value to their developers should be used.
3) Travel Light: As Software Engineering work proceeds, keep only those models that will provide long- term value and discard the rest. Every work product that is kept, must be maintained as changes occur. It is required to look for best possible model from various sources.
4) Know the models and tools used to create them: Understand the tools used to create the models and also strengths and weaknesses of each model.
5) Adapt Locality: Modeling approach should be adapted to the needs of agile team.
6) Content is more important than representation: A perfect model that imports little useful content is not as valuable as a flawed notation with valuable content. So, focus should be on the content in model.	
Question Bank:
1. What is software engineering?
2. What is Software?
3. What are the characteristics of the software?
4. What are the various categories of software?

MCET, SE Study Material	Page 44

image3.png
Operating
procedures

Documentation

Software = Program + Documentation + Operating Procedures

image4.emf

image5.emf

image6.wmf
Software Process

Software Process

Assessment

is examined by

identifies capabilities

and risk of

identifies

modifications to

Software Process

Improvement

Capability

Determination

leads to

leads to

motivates

image7.emf

image8.png
60- 90 days

communication

planning

business modeling

data modeling
process modeli

modeling

integration
delivery
feedback

construction

Team #2
deployment

modeling

construction

ing

‘component reuse
automatic code

generation

construction

image9.emf

image10.emf

image11.emf

image12.wmf

image13.wmf

image14.png
Agility has become today’s buzzword when describing a modern software process. Every-
one is agile. An agile team is a nimble team able to appropriately respond to changes.
Change is what software development is very much about. Changes in the software be-
ing built, changes to the team members, changes because of new technology, changes of
all kinds that may have an impact on the product they build or the project that creates the
product. Support for changes should be built-in everything we do in software, something
we embrace because it is the heart and soul of software. An agile team recognizes that
software is developed by individuals working in teams and that the skills of these people,
their ability to collaborate is at the core for the success of the project.

image15.wmf

image16.wmf

image17.wmf

image18.wmf

image19.emf

image20.png
Secrum meetings—are short (typically 15 minutes) meetings held daily by the Scrum
team. Three key questions are asked and answered by all team members

image21.emf

image22.emf

image23.wmf

image24.png
In the context of FDD, a feature “is a client-valued function that can be imple-
mented in two weeks or less” The emphasis on the definition of features
provides the following benefits:

image25.emf

image1.jpeg
Engineering:

Design Build
Software Engineering:
Design Build

Product

Product

image2.png

