# **Chapter 17: Distributed Multimedia Systems**

- Introduction
- Characteristics of multimedia data
- Quality of service management
- Resource management
- Stream adaptation
- Case study: the Tiger video file server

#### Introduction

#### Distributed multimedia applications

- Networked video library, Internet telephony, videoconference
- Generate and consume continuous streams of data in real time

## • Characteristics of multimedia applications

- Timely delivery of streams of multimedia data to end-users
  - Audio sample, video frame
- To meet the timing requirements
  - QoS( quality of service)

#### A typical distributed multimedia system



⇔

#### The window of scarcity

• A history of computer systems that support distributed data access



## **Chapter 17: Distributed Multimedia Systems**

- Introduction
- Characteristics of multimedia data
- Quality of service management
- Resource management
- Stream adaptation
- Case study: the Tiger video file server

#### **Characteristics of multimedia data**

#### • Continuous

- Refer to the user's view of the data
- Video: a image array is replaced 25 times per second
- Audio: the amplitude value is replaced 8000 times per second
- Time-based
  - The times at which the values are played or recorded affect the validity of the data
  - Hence, the timing should be preserved

# **Chapter 17: Distributed Multimedia Systems**

- Introduction
- Characteristics of multimedia data
- Quality of service management
- Resource management
- Stream adaptation
- Case study: the Tiger video file server

## **Traditional computer systems**

#### • Multimedia App. compete with other App. for

- Processor cycles, bus cycles, buffer capacity
- Physical transmission links, switches, gateways
- Best-effort policies
  - Multi-task OS: round-robin scheduling or other scheduling
    - shares the processing resource on a best-effort basis among all of the task currently competing
  - Ethernet
    - manages a shared transmission medium in best-efforts manner
- Best-effort policies are not fit to multimedia apps.
- In order to achieve timely delivery,
  - applications need guarantees that the necessary resources will be allocated and scheduled at the required times
    - → QoS management

# Typical infrastructure components for multimedia applications



⇔

# **QoS specifications for components of the application shown in Figure 15.4**

| Component |                       |         | Bandwidth                                   | Latency      | Loss rate | Resources required                     |
|-----------|-----------------------|---------|---------------------------------------------|--------------|-----------|----------------------------------------|
|           | Camera                | Out:    | 10 frames/sec, raw video<br>640x480x16 bits | ) -          | Zero      | _                                      |
| A         | Codec                 | In:     | 10 frames/sec, raw video                    | Interactive  | Low       | 10 ms CPU each 100 ms;                 |
|           |                       | Out:    | MPEG-1 stream                               |              |           | 10 Mbytes RAM                          |
| В         | Mixer                 | In:     | $2 \times 44$ kbps audio                    | Interactive  | Very low  | 1 ms CPU each 100 ms;                  |
|           |                       | Out:    | 1 × 44 kbps audio                           |              |           | 1 Mbytes RAM                           |
| Η         | Window                | In:     | various                                     | Interactive  | Low       | 5 ms CPU each 100 ms;                  |
|           | system                | Out:    | 50 frame/sec framebuffe                     | r            |           | 5 Mbytes RAM                           |
| K         | Network<br>connection | In/Out: | MPEG-1 stream, approx<br>1.5 Mbps           | .Interactive | Low       | 1.5 Mbps, low-loss stream protocol     |
| L         | Network connection    | In/Out: | Audio 44 kbps                               | Interactive  | Very low  | 44 kbps, very low-loss stream protocol |

### The QoS manager's task

- The OoS manager's two main subtasks are:
  - Quality of service negotiation
  - Admission control

## The QoS manager's task



#### **Quality of service negotiation**

- Resource requirements specification
  - -bandwidth
    - The rate at which a multimedia stream flows
  - -Latency
    - The time required for an individual data element to move through a stream from the source to the destination
    - jitter
  - -Loss rate
    - Data loss due to unmet resource requirements
    - A rate of data loss that can be accepted. E.g., 1%

#### The usage of resource requirements spec.

- Describe a multimedia stream
  - Describe the characteristics of a multimedia stream in a particular environment
  - E.g. a video conference
    - Bandwidth: 1.5Mbps; delay: 150ms, loss rate: 1%
- Describe the resources
  - Describe the capabilities of resources to transport a stream
  - E.g. a network may provide
    - Bandwidth: 64kbps; delay: 10ms; loss rate: 1/1000

### **Traffic shaping**

#### • Traffic shaping

- Output buffering to smooth the flow of data elements
- Leaky bucket, Token bucket

### • The leaky bucket algorithm

- completely eliminate burst
- R
  - A stream will never flow with a rate higher than R
- B
  - Size of the buffer
  - Bound the time for which an element will remain in the buffer

(a) Leaky bucl

## **Traffic shaping (2)**

#### • The token bucket algorithm

- Allow larger burst
- Token is generated at a fixed rate of R
- the tokens are collected in a bucket of size B
- Data of size *S* can be sent only if at least *S* tokens are in the bucket
- Ensure: over any interval t, the amount of data sent is not larger than Rt+B,



#### Flow specification – RFC 1363

## • Bandwidth

- The maximum transmission unit and maximum transmission rate
- The burstiness of the stream
  - The token bucket size and rate
- Delay
  - The minimum delay that an application can notice, the maximum jitter it can accept
- Loss rate
  - The total acceptable number of losses over a certain interval
  - The maximum number of consecutive losses

#### **Admission control**

- Avoid resource overload
- Protect resource from requests that they cannot fulfill
- Bandwidth reservation
  - Reserve some portion of resource bandwidth exclusively
- Statistical multiplexing
  - Reserve minimum or average bandwidth
  - Handle burst that cause some service drop level occasionally
  - Hypothesis
    - a large number of streams the aggregate bandwidth required remains nearly constant regardless of the bandwidth of individual streams

# **Chapter 17: Distributed Multimedia Systems**

- Introduction
- Characteristics of multimedia data
- Quality of service management
- Resource management
- Stream adaptation
- Case study: the Tiger video file server
- Summary

#### **Resource Management**

- To provide a certain QoS level to an application, a system needs to have sufficient resources, it also needs to make the resources available to an application when they are needed (scheduling).
- Resource Scheduling: A process needs to have resources assigned to them according to their priority. Following 2 methods are used:
  - Fair Scheduling
  - Real-time scheduling

#### **Resource scheduling**

#### • Fair scheduling

- when several streams compete for the same resource
- Round-robin
  - Packet-by-packet
  - Bit-by-bit

#### • Real-time scheduling

- Earliest-deadline-first (EDF)
  - Each media element is assigned a *deadline* by which it must be sent out
  - The scheduler send media elements according to their *deadline*

# **Chapter 17: Distributed Multimedia Systems**

- Introduction
- Characteristics of multimedia data
- Quality of service management
- Resource management
- Stream adaptation
- Case study: the Tiger video file server

#### **Stream adaptation**

- Stream adaptation
  - An application adapt to changing QoS levels when a certain QoS cannot be guaranteed
- Drop pieces of information
  - Audio stream
    - Drop can be noticed immediately by the listener
  - Video stream
    - Motion JPEG: easy since frames are independent
    - MPEG: difficult since frames are interdependent
- Increase delay
  - Acceptable for non-interactive applications
- Two methodologies are used:
  - <u>Scaling</u>
  - Filtering

# Scaling

- When to perform scaling
  - Adapt a stream to the bandwidth available in the system before it enters a bottleneck resource
- Scaling approach
  - Implementation
    - A monitor process at the target
    - A scaler process at the source
    - Monitor keeps track of the arrival times of messages in a stream. Delayed messages are an indication of bottle neck in the system.
    - Monitor sends a scale-down message to the source that scales up again

## Different scaling methods

#### Temporal scaling

- Decrease the number of video frames transmitted within an interval

## Spatial scaling

 Reduce the number of pixels of each image in an video stream, e.g., JPEG and MPEG-2

## • Frequency scaling

- Modify the compression algorithm applied to an image

## Amplitudinal scaling

- Reduce the color depths for each image pixel

## • Color space scaling

 Reduce the number of entries in the color space, e.g., from color to grey-scale presentation

# Filtering

- Scaling is not suitable to a stream that involves several receivers
  - Since scaling is conducted at the source, a *scale-down* message will degrade the quality of all streams
- Filtering
  - A stream is partitioned into a set of hierarchical sub-streams
  - The capacity of nodes on a path determines the number of substreams a target receives



# **Chapter 17: Distributed Multimedia Systems**

- Introduction
- Characteristics of multimedia data
- Quality of service management
- Resource management
- Stream adaptation
- Case study: the Tiger video file server

# Design goals

- Video-on-demand for a large number of users
  - A large stored digital movie library
  - Users can perform pause, rewind, fast-forward
- Quality of service
  - Constant rate
  - a maximum jitter and low loss rate
- Scalable and distributed
  - Support up to 10000 clients simultaneously
- Low-cost hardware
  - Constructed by commodity PC
- Fault tolerant
  - Tolerant to the failure of any single server or disk

## System architecture

#### One controller

- Connect with each server by low-bandwidth network

#### • Cubs – the server group

- Each cub is attached by a number of disks (2-4)
- Cubs are connected to clients by ATM



## Storage organization

- Stripping
  - A movie is divided into blocks
  - The blocks of a movie are stored on disks attached to different cubs in a sequence of the disk number
  - Deliver a movie: deliver the blocks of the movie from different disks in the sequence number
  - Load-balance when delivering hotspot movies
- Mirroring
  - Each block is divided into several portions (secondaries)
  - The secondaries are stored in the successors
    - If a block is on a disk *i*, then the *secondaries* are stored on disks *i*+1 to *i*+*d*
  - Fault-tolerance for single cub or disk failure

## Distributed schedule

- Slot
  - The work to be done to play one block of a movie

## • Deliver a stream

- Deliver the blocks of the stream disk by disk
- Can be viewed as a slot moving along disks step by step

## • Deliver multiple streams

- Multiple slots moving along disks step by step

## • Viewer state

- Address of the client computer
- Identity of the file being played
- Viewer's position in the file
- The viewer's play sequence number
- Bookeeping information

## Tiger schedule



## Distributed schedule (2)

- Block play time T
  - The time that will be required for a viewer to display a block on the client computer
  - Typically about 1 second for all streams
  - The next block of a stream must begin to be delivered *T* time after the current block begin to be delivered
- *Block service time t* ( a slot )
  - Read the next block into buffer
  - Deliver it to the client
  - Update viewer state in the schedule and pass the updated slot to the next cub
  - T / t typically result in a value > 4
- The maximum streams the Tiger system can support simultaneously
  - T/t \* the number of disks