B561 Advanced Database Concepts

§0 Introduction
Qin Zhang

Self introduction: my research interests

- Algorithms for Big Data: streaming/sketching algorithms; algorithms on distributed data;
I/O-efficient algorithms; data structures;
- Complexity: communication complexity.

I am a theoretician, and occasionally work on databases and data mining

Self introduction: my research interests

- Algorithms for Big Data: streaming/sketching algorithms; algorithms on distributed data;
l/O-efficient algorithms; data structures;
- Complexity: communication complexity.

I am a theoretician, and occasionally work on databases and data mining

You may ask: "why do you teach databases (and probably make our lives harder)"?

Self introduction: my research interests

- Algorithms for Big Data: streaming/sketching algorithms; algorithms on distributed data; I/O-efficient algorithms; data structures;
- Complexity: communication complexity.

I am a theoretician, and occasionally work on databases and data mining

You may ask: "why do you teach databases (and probably make our lives harder)"?

Hope you will not ask me again after this course :) I am learning together with you.

What does a typical undergrad database course cover?

How to represent data?

How to represent the data in the computer?

Title	Year	Length	Type
Star Wars	1977	124	color
Mighty Ducks	1991	104	color
OR?			
Wayne's World	1992	95	color

How to represent data?

How to represent the data in the computer?

How to operate on data?

Given the data, say, a set of tables, how to answer queries?
Difficulty: Queries may depend crucially on the data in all tables.
Product

PName	Price	Category	Manufacturer
Gizmo	19.99	Gadgets	GizmoWorks
Powergizmo	29.99	Gadgets	GizmoWorks
SingleTouch	149.99	Photography	Canon
MultiTouch	203.99	Household	Hitachi

Company

cName	StockPrice	Country
GizmoWorks	25	USA
Canon	65	Japan
Hitachi	15	Japan

Q: Find all products under price 200 manufactured in Japan?

How to operate on data? (cont.)

Product

PName	Price	Category	Manufacturer
Gizmo	19.99	Gadgets	GizmoWorks
Powergizmo	29.99	Gadgets	GizmoWorks
SingleTouch	149.99	Photography	Canon
MultiTouch	203.99	Household	Hitachi

Company		
CName	StockPrice	Country
GizmoWorks	25	USA
Canon	65	Japan
Hitachi	15	Japan

- SQL

SELECT x.PName, x.Price FROM Product x, Company y
WHERE x.Manufacturer $=y$.CName
AND y.Country='Japan'
AND x.Price ≤ 200

- Relational Algebra
$\pi_{\text {PName, Price }}$
$\left(\sigma_{\text {Price }} \leq 200 \wedge\right.$ Country='Japan' $\left(\right.$ Product $\bowtie_{\text {Manufacturer }}=C$ Name Company $\left.)\right)$

How to speed up the operation?

How to speed up the operation?
Relational operations can sometimes be computed much faster if we have precomputed a suitable data structure on the data. This is called Indexing.

How to speed up the operation?

How to speed up the operation?
Relational operations can sometimes be computed much faster if we have precomputed a suitable data structure on the data. This is called Indexing.

Most notably, two kinds of index structures are essential to database performance:

1. B-trees.

2. External hash tables.

For example, hash tables may speed up relational operations that involve finding all occurrences in a relation of a particular value.

How to make a good operation plan?

How to optimize the orders of the operations?
$R(A, B, C, D), S(E, F, G)$
Find all pairs $(x, y), x \in R, y \in S$ such that
(1) $x . D=y \cdot E$, (2) $x \cdot A=5$ and (3) $y \cdot G=9$
$\sigma_{A=5 \wedge G=9}\left(R \bowtie_{D=E} S\right)=\sigma_{A=5}(R) \bowtie_{D=E} \sigma_{G=9}(S)$

Q: Use the LHS or RHS?

How to deal with transactions?

Transactions with the ideal ACID properties resolve the semantic problems that arise when many concurrent users access and change the same database.

- Atomicity (= recovery)
- Consistency
- Isolation (= concurrency control)
- Durability

How to deal with transactions?

Transactions with the ideal ACID properties resolve the semantic problems that arise when many concurrent users access and change the same database.

- Atomicity (= recovery)
- Consistency
- Isolation (= concurrency control)
- Durability

We will talk about how transactions are implemented using locking and timestamp mechanisms.

This knowledge is useful in database programming, e.g., it makes it possible in some cases to avoid (or reduce) rollbacks of transactions, and generally make transactions wait less for each other.

Summarize

Database $=$

Logic
(express the query)

System

(implementation)

Algorithm

(solve the query)

Summarize

Database $=$

Logic
(express the query)

System

(implementation)

Algorithm

(solve the query)

Implementation
Concept (our focus)
(see B662 Database System and Internal Design)

Summarize

Database $=$

Logic

(express the query)

Data Representation, Relational Algebra, SQL (Datalog), etc.

Algorithm
(solve the query)
Indexing, Query Optimization, Concurrency Control, etc.

Implementation
Concept (our focus)

System

(implementation)

Summarize

Database $=$

Logic
(express the query)

Data Representation, Relational Algebra, SQL (Datalog), etc.

Algorithm
(solve the query)
Indexing, Query Optimization, Concurrency Control, etc.

Implementation
Concept (our focus)

And you need math!!

System

(implementation)
(see B662 Database System and Internal Design)

What's more in this course?

Advanced topics

Beyond "SQL, Relational Algebra, Data Models,
Storage, Views and Indexing, Query Processing, Query
Optimization, Transaction Recovery, Concurrency
Control"
I will give you a taste of

1. Data Privacy (Data Suppression, Differential
Privacy)
2. External Memory a.k.a. I/O-Efficient
Algorithms (Sorting, List Ranking)
3. Streaming Algorithms (Sampling, Heavy Hitters,
Distinct Elements)
4. Data Integration / Cleaning (Deduplication)
5. MapReduce

Other important topics in databases

More but probably will not cover

1. Tree-based data models e.g., XML
2. Graph-based data models e.g., RDF
3. Spatial databases
4. Parallel and Distributed databases partly covered in MapReduce
5. Social Networks
6. Uncertainty in databases etc.

Tentative course plan

Part 0 : Introductions
Part 1 \& 2 : Basics

- SQL, Relational Algebra
- Data Models, Storage, Indexing

Part 3 : Optimization
Part 4 : Trasactions
Part 5 : Data Privacy
Part 6 : I/O-Efficient Algorithms
Part 7 : Streaming Algorithms
Part 8 : Data Integration
Part 9 : MapReduce

Tentative course plan

Part 0 : Introductions
Part 1 \& 2 : Basics

- SQL, Relational Algebra
- Data Models, Storage, Indexing

Part 3 : Optimization
Part 4 : Trasactions
Part 5 : Data Privacy
Part 6 : I/O-Efficient Algorithms
Part 7 : Streaming Algorithms
Part 8 : Data Integration
Part 9 : MapReduce

We will also have some student presentations at the end of the course

Resources

- Main reference book (we will go beyond this)
- Database Systems: The Complete Book by Hector Garcia-Molina, Jeff Ullman and Jennifer Widom, 2nd Edition

DATABASE

- Other reference books (undergrad textbooks ...)
- Database Management Systems by Ramakrishnan and Guhrke, 3rd Edition

- Database System Concepts by UllSilberschatz, Korth and Sudarshan, 6th Edition

Resources (cont.)

- Other reference books (cont.):
- Readings in Database Systems "Red book" Hellerstein and Stonebraker, eds., 4th Edition (Will be one of our readings)

- Foundations of Databases: The Logical Level "Alice book" by Abiteboul, Hull, Vianu
- Concurrency Control and Recovery in Database

${ }^{a}$ http://research.microsoft.com/en-us/people/philbe/ ccontrol.aspx

Resources (cont.)

- Other reference books (cont.):
- Algorithms and Data Structures for External Memory ${ }^{\text {a }}$ by Vitter
${ }^{a}$ http://www.ittc.ku.edu/~jsv/Papers/Vit.IO_book.pdf
- Data Streams: Algorithms and Applications ${ }^{\text {a }}$ by S. Muthukrishnan
${ }^{\text {a }}$ http://www.cs.rutgers.edu/ muthu/stream-1-1.ps

Resources (cont.)

- Other reference books (cont.):
- Algorithms and Data Structures for External Memory ${ }^{\text {a }}$ by Vitter ${ }^{a}$ http://www.ittc.ku.edu/~jsv/Papers/Vit.IO_book.pdf
- Data Streams: Algorithms and Applications ${ }^{\text {a }}$ by S. Muthukrishnan

```
ahttp://www.cs.rutgers.edu/ muthu/stream-1-1.ps
```


These are surely not enough, and sometimes dated. Do you want to learn more? Reading original papers! In fact, some of my slides are directly from VLDB toturials

Instructors

- Instructor: Qin Zhang

Email: qzhangcs@indiana.edu
Office hours: Tuesday $2: 45 \mathrm{pm}-3: 45 \mathrm{pm}$
(Lindley 215E temporary, then Lindley 430A)

- Associate Instructors:
- Erfan Sadeqi Azer
- Le Liu
- Yifan Pan
- Ali Varamesh
- Prasanth Velamala

Office hours: Posted on course website

Grading

Assignments 50\% : Three written assignments (each 10\%). Solutions should be typeset in LaTeX (highly recommended) or Word.

And one reading assignment (20\%) (next slide for details)

Selected/volunteer students will give presentations

Exams 50\% : Mid-term (20\%) and Final (30\%).

Grading

Assignments 50\% : Three written assignments (each 10\%). Solutions should be typeset in LaTeX (highly recommended) or Word.

And one reading assignment (20\%) (next slide for details)

Selected/volunteer students will give presentations

Exams 50\% : Mid-term (20\%) and Final (30\%).

Use A, B, \ldots for each item (assignments, exams). Final grade will be a weighted average (according to $\mathrm{XX} \mathrm{\%}$).

Reading assignment

One or a group of two read some (1 to $+\infty$) papers/surveys/articles and write a report (4 pages for one, and 8 pages for a group of two) on what you think of the articles you read (not just a repeat of what they have said).

Topics can be found in redbook http://redbook.cs.berkeley.edu/bib4.html, and more topics on the course website "More reading topics" (google the papers / surveys yourself; contact AI if you cannot find it).

Selected students/groups (volunteer first) will give 25 mins talks (20 mins presentation $+5 \mathrm{mins} \mathrm{Q} \& \mathrm{~A}$) in class. The best $1 / 3$ individuals/groups will get a bonus in their final grades. A penalty will be given if you agree to give a talk but cannot do at the end, while the quality of the talk is irrelevant.

LaTeX: Highly recommended tools for assignments/reports

1. Read wiki articles: http://en.wikipedia.org/wiki/LaTeX
2. Find a good LaTeX editor.
3. Learn how to use it, e.g., read "A Not So Short Introduction to LaTeX 2e" (Google it)

Prerequisite

Participants are expected to have a background in algorithms and data structures. For example, have taken

1. C241 Discrete Structures for Computer Science
2. C343 Data Structures
3. B403 Introduction to Algorithm Design and Analysis or equivalent courses, and know some basics of databases.

Frequently asked questions

- Is this a course good for my job hunting in industry?

Yes, if you get to know some advanced concepts in databases, that will certainly help.
But, this is a course on theoretical foundations of databases, but not designed for teaching commercially available techniques and not a programming language (SQL? PHP?) course, and not a "hands on" course (this is not a course for professional training; this is a graduate course in a major research university thus should be much more advanced)

Frequently asked questions

- Is this a course good for my job hunting in industry?

Yes, if you get to know some advanced concepts in databases, that will certainly help.
But, this is a course on theoretical foundations of databases, but not designed for teaching commercially available techniques and not a programming language (SQL? PHP?) course, and not a "hands on" course (this is not a course for professional training; this is a graduate course in a major research university thus should be much more advanced)

- I haven't taken B403 "Introduction to Algorithm Design and Analysis" or equivalent courses. Can I take the course? Or, will this course fit me?

Generally speaking, this is an advanced course. It will be difficult if you do not have enough background. You can take into consideration the touch-base exam.

The goal of this course

Open / change your views of the world (of databases)

The goal of this course

Open / change your views of the world (of databases)

Seriously, it is not just SQL programming.

Read "The relational model is dead, SQL is dead, and I don't feel so good myself'

Big Data

Big Data

- Big data is everywhere
- Walmart z_{1} : over 2.5 petabytes of sales transactions
- Google : an index of over 19 billion web pages
- facebook: over 40 billion of pictures

Big Data

- Big data is everywhere
- Walmart $\geqslant:$: over 2.5 petabytes of sales transactions
- Google : an index of over 19 billion web pages
- facebook: over 40 billion of pictures
- Magazine covers

Nature '06

Nature '08

CACM '08

Economist '10

Source and challenge

- Source
- Retailer databases: Amazon, Walmart
- Logistics, financial \& health data: Stock prices
- Social network: Facebook, twitter
- Pictures by mobile devices: iphone
- Internet traffic: IP addresses
- New forms of scientific data: Large Synoptic Survey Telescope

Source and challenge

- Source
- Retailer databases: Amazon, Walmart
- Logistics, financial \& health data: Stock prices
- Social network: Facebook, twitter
- Pictures by mobile devices: iphone
- Internet traffic: IP addresses
- New forms of scientific data: Large Synoptic Survey Telescope
- Challenge
- Volume
- Velocity
- Variety (Documents, Stock records, Personal profiles, Photographs, Audio \& Video, 3D models, Location data, ...)

Source and challenge

- Source
- Retailer databases: Amazon, Walmart
- Logistics, financial \& health data: Stock prices
- Social network: Facebook, twitter
- Pictures by mobile devices: iphone
- Internet traffic: IP addresses
- New forms of scientific data: Large Synoptic Survey Telescope
- Challenge
- Volume - Velocity $\}$ The main technical challenges
- Variety (Documents, Stock records, Personal profiles, Photographs, Audio \& Video, 3D models, Location data, ...)

What does Big Data really mean?

- We don't define Big Data in terms of TB, PB, EB, ...
- The data is too big to fit in memory. What can we do?

What does Big Data really mean?

- We don't define Big Data in terms of TB, PB, EB, ...
- The data is too big to fit in memory. What can we do?
- Store them in the disk, and read/write a block of data each time

What does Big Data really mean?

- We don't define Big Data in terms of TB, PB, EB, ...
- The data is too big to fit in memory. What can we do?
- Store them in the disk, and read/write a block of data each time
- Processing one by one as they come, and throw some of them away on the fly.

What does Big Data really mean?

- We don't define Big Data in terms of TB, PB, EB, ...
- The data is too big to fit in memory. What can we do?
- Store them in the disk, and read/write a block of data each time
- Processing one by one as they come, and throw some of them away on the fly.
- Store in multiple machines, which collaborate via communication

What does Big Data really mean?

- We don't define Big Data in terms of TB, PB, EB, ...
- The data is too big to fit in memory. What can we do?
- Store them in the disk, and read/write a block of data each time
- Processing one by one as they come, and throw some of them away on the fly.

■ Store in multiple machines, which collaborate via communication

- RAM model does not fit
- A processor and an infinite size memory
- Probing each cell of the memory has a unit cost

Big Data:
 A marketing buzzword??

Big Data:
 A marketing buzzword??

A good reading topic

Popular models for big data (see another slides)

Summary for the introduction

- We have discussed topics that will be covered in this course
- We have introduced some models for big data computation.
- We have talked about the course plan and assessment.

Thank you! Questions?

A few introductory slides are based on Rasmus Pagh's slides
http://www.itu.dk/people/pagh/ADBT06/

