

Chapter 9

Asynchronous Sequential Logic

0 1

Outline

- Asynchronous Sequential Circuits
- Analysis Procedure
- Circuits with Latches
- Design Procedure
- Reduction of State and Flow Tables
- Race-Free State Assignment
- Hazards
- Design Example

Why Asynchronous Circuits?

- Used when speed of operation is important
 - Response quickly without waiting for a clock pulse
- Used in small independent systems
 - Only a few components are required
- Used when the input signals may change independently of internal clock
 - Asynchronous in nature
- Used in the communication between two units that have their own independent clocks
 - Must be done in an asynchronous fashion

0 E

Definitions of Asyn. Circuits

- Inputs / Outputs
- Delay elements:
 - Only a short term memory
 - May not really exist due to original gate delay
- Secondary variable:
 - Current state (small y)
- Excitation variable:
 - Next state (big Y)
 - Have some delay in response to input changes

Operational Mode

- Steady-state condition:
 - Current states and next states are the same
 - Difference between Y and y will cause a transition
- Fundamental mode:
 - No simultaneous changes of two or more variables
 - The time between two input changes must be longer than the time it takes the circuit to a stable state
 - The input signals change one at a time and only when the circuit is in a stable condition

0.7

Outline

- Asynchronous Sequential Circuits
- Analysis Procedure
- Circuits with Latches
- Design Procedure
- Reduction of State and Flow Tables
- Race-Free State Assignment
- Hazards
- Design Example

Transition Table

- Transition table is useful to analyze an asynchronous circuit from the circuit diagram
- Procedure to obtain transition table:
 - 1. Determine all feedback loops in the circuits
 - 2. Mark the input (y_i) and output (Y_i) of each feedback loop
 - 3. Derive the Boolean functions of all Y's
 - 4. Plot each Y function in a map and combine all maps into one table
 - 5. Circle those values of Y in each square that are equal to the value of y in the same row

State Table

- When input x changes from 0 to 1 while y=00:
 - Y changes to 01 → unstable
 - y becomes 01 after a short delay → stable at the second row
 - The next state is Y=01
- Each row must have at least one stable state
- Analyze each state in this way can obtain its state table

	0	r 1
y ₁ y ₂ 00	<u></u>	1 01
01	11	01
11	(11)	10
10	00	10

Present			Next State				
State		X=0		X=1			
	0	0	0	0	0	1	
	0	1	1	1	0	1	
	1	0	0	0	1	0	
	1	1	1	1	1	0	

y₁y₂x: total state 4 stable total states: 000,011, 110,101

Flow Table

- Similar to a transition table except the states are represented by *letter symbols*
- Can also include the output values
- Suitable to obtain the logic diagram from it

Primitive flow table: only one stable state in each row (ex: 9-4(a))

Equivalent to 9-3(c) if a=00, b=01, c=11, d=10

(a) Four states with one input

(b) Two states with two inputs and one output

Race-Free State Assignment

- Race can be avoided by proper state assignment
 - Direct the circuit through intermediate unstable states with a unique state-variable change
 - It is said to have a cycle
- Must ensure that a cycle will terminate with a stable state
 - Otherwise, the circuit will keep going in unstable states
- More details will be discussed in Section 9-6

Stability Check

- Asynchronous sequential circuits may oscillate between unstable states due to the feedback
 - Must check for stability to ensure proper operations
- Can be easily checked from the transition table
 - Any column has no stable states → unstable
 - Ex: when $x_1x_2=11$ in Fig. 9-9(b), Y and y are never the same

Outline

- Asynchronous Sequential Circuits
- Analysis Procedure
- Circuits with Latches
- Design Procedure
- Reduction of State and Flow Tables
- Race-Free State Assignment
- Hazards
- Design Example

0 17

Latches in Asynchronous Circuits

- The traditional configuration of asynchronous circuits is using one or more feedback loops
 - No real delay elements
- It is more convenient to employ the SR latch as a memory element in asynchronous circuits
 - Produce an orderly pattern in the logic diagram with the memory elements clearly visible
- SR latch is also an asynchronous circuit
 - Will be analyzed first using the method for asynchronous circuits

Analysis Procedure

- Procedure to analyze an asynchronous sequential circuits with SR latches:
 - 1. Label each latch output with Y_i and its external feedback path (if any) with y_i
 - 2. Derive the Boolean functions for each S_i and R_i
 - Check whether SR=0 (NOR latch) or S'R'=0 (NAND latch) is satisfied
 - Evaluate Y=S+R'y (NOR latch) or Y=S'+Ry (NAND latch)
 - 5. Construct the transition table for $Y=Y_1Y_2...Y_k$
 - 6. Circle all stable states where Y=y

Implementation Procedure

- Procedure to implement an asynchronous sequential circuits with SR latches:
 - 1. Given a transition table that specifies the excitation function $Y = Y_1Y_2...Y_k$, derive a pair of maps for each S_i and R_i using the latch excitation table
 - 2. Derive the Boolean functions for each S_i and R_i (do not to make Si and Ri equal to 1 in the same minterm square)
 - 3. Draw the logic diagram using *k* latches together with the gates required to generate the S and R (for NAND latch, use the complemented values in step 2)

Debounce Circuit

- Mechanical switches are often used to generate binary signals to a digital circuit
 - It may vibrate or bounce several times before going to a final rest
 - Cause the signal to oscillate between 1 and 0
- A debounce circuit can remove the series of pulses from a contact bounce and produce a single smooth transition
 - Position A (SR=01) \rightarrow bouncing (SR=11) \rightarrow Position B (SR=10) Q = 1 (set) \rightarrow Q = 1 (no change) \rightarrow Q = 0 (reset)

Outline

- Asynchronous Sequential Circuits
- Analysis Procedure
- Circuits with Latches
- Design Procedure
- Reduction of State and Flow Tables
- Race-Free State Assignment
- Hazards
- Design Example

Design Procedure

- 1. Obtain a primitive flow table from the given design specifications
- 2. Reduce the flow table by merging rows in the primitive flow table
- 3. Assign binary state variables to each row of the reduced flow to obtain the transition table
- 4. Assign output values to the dashes associated with the unstable states to obtain the output map
- 5. Simplify the Boolean functions of the excitation and output variables and draw the logic diagram

0.27

Primitive Flow Table

- Design example: gated latch
 - Accept the value of D when G=1
 - Retain this value after G goes to 0 (D has no effects now)
- Obtain the flow table by listing all possible states

 Dash marks are given when both inputs change simultaneously

Outputs of unstable states are don't care

	Input		Output	
State	D	G	Q	Comments
а	0	1	0	D=Q because G=1
b	1	1	1	D=Q because G=1
С	0	0	0	After states a or d
d	1	0	0	After state c
е	1	0	1	After states b or f
f	0	0	1	After state e

DG								
	00	01	11	10				
,	c,-	(a), 0	b ,-	-,-				
,	-,-	a ,-	(<i>b</i>) , 1	e,-				
:	ⓒ,0	a ,-	-,-	d ,-				
ı	c,-	-,-	b ,-	(d),0				
,	f,-	-,-	b ,-	(e), 1				
r	(f) , 1	a ,-	-,-	e ,-	9			

Reduce the Flow Table

- Two or more rows can be merged into one row if there are non-conflicting states and outputs in every columns
- After merged into one row:
 - Don't care entries are overwritten
 - Stable states and output values are included
 - A common symbol is given to the merged row
- Formal reduction procedure is given in next section

(a) States that are candidates for merging

(b) Reduced table (two alternatives)

0.20

Transition Table and Logic Diagram

y 00 01 11 10 0 0 0 1 0

- Assign a binary value to each state to generate the transition table
 - a=0, b=1 in this example
- Directly use the simplified Boolean function for the excitation variable Y
 - An asynchronous circuit without latch is produced

Outputs for Unstable States

- Objective: no momentary false outputs occur when the circuit switches between stable states
- If the output value is not changed, the intermediate unstable state must have the same output value
 - $0 \rightarrow 1$ (unstable) $\rightarrow 0$ (X)
 - $0 \rightarrow 0$ (unstable) $\rightarrow 0$ (O)
- If the output value changed, the intermediate outputs are don't care
 - It makes no difference when the output change occurs

(b) Output assignment

Outline

- Asynchronous Sequential Circuits
- Analysis Procedure
- Circuits with Latches
- Design Procedure
- Reduction of State and Flow Tables
- Race-Free State Assignment
- Hazards
- Design Example

0 22

State Reduction

- Two states are equivalent if they have the *same output* and go to the *same* (equivalent) *next states* for each possible input
 - Ex: (a,b) are equivalent (c,d) are equivalent
- State reduction procedure is similar in both sync. & async. sequential circuits

Present	Next State		Out	put
State	x=0	x=1	x=0	x=1
а	С	b	0	1
b	d	а	0	1
С	а	d	1	0
d	b	d	1	0

- For completely specified state tables:
 - → use implication table
- For incompletely specified state tables:
 - → use compatible pairs

Implication Table Method (1/2)

■ Step 1: build the implication chart

Present	Next	State	Output	
State	x=0	x=1	x=0	x=1
а	d	b	0	0
b	е	а	0	0
С	g	f	0	1
d	а	d	1	0
е	а	d	1	0
f	С	b	0	0
g	а	е	1	0

Implication Table Method (2/2)

- Step 2: delete the node with unsatisfied conditions
- Step 3: repeat Step 2 until equivalent states found

equivalent states :
(a,b) (d,e) (d,g) (e,g)
d == e == g

Present	Next	State	Output	
State	x=0	x=1	x=0	x=1
а	d	а	0	0
С	d	f	0	1
d	а	d	1	0
f	С	а	0	0

Reduced State Table 9-3

Merge the Flow Table

- The state table may be incompletely specified
 - Some next states and outputs are don't care
- Primitive flow tables are always incompletely specified
 - Several synchronous circuits also have this property
- Incompletely specified states are not "equivalent"
 - Instead, we are going to find "compatible" states
 - Two states are compatible if they have the same output and compatible next states whenever specified
- Three procedural steps:
 - Determine all compatible pairs
 - Find the maximal compatibles
 - Find a minimal closed collection of compatibles

9-37

Compatible Pairs

- Implication tables are used to find compatible states
 - We can adjust the dashes to fit any desired condition
 - Must have no conflict in the output values to be merged

19

Maximal Compatibles

- A group of compatibles that contains all the possible combinations of compatible states
 - Obtained from a merger diagram
 - A line in the diagram represents that two states are compatible
- n-state compatible → n-sided fully connected polygon

(a) Maximal compatible (a, b,) (a, c, d) (b, e, f)

- All its diagonals connected
 Not all maximal compatibles are necessary
- (b) Maximal compatible: (a,b,ϵ,f) (b,c,h) (c,d) (g)

Closed Covering Condition

- The set of chosen compatibles must cover all the states and must be closed
 - Closed covering
- The closure condition is satisfied if
 - There are no implied states
 - The implied states are included within the set
- Ex: if remove (a,b) in the right
 - (a,c,d) (b,e,f) are left in the set
 - All six states are still included
 - No implied states according to its implication table 9-23(b)

9-40

Outline

- Asynchronous Sequential Circuits
- Analysis Procedure
- Circuits with Latches
- Design Procedure
- Reduction of State and Flow Tables
- Race-Free State Assignment
- Hazards
- Design Example

Race-Free State Assignment

- Objective: choose a proper binary state assignment to prevent critical races
- Only one variable can change at any given time when a state transition occurs
- States between which transitions occur will be given adjacent assignments
 - Two binary values are said to be adjacent if they differ in only one variable
- To ensure that a transition table has no critical races, every possible state transition should be checked
 - A tedious work when the flow table is large
 - Only 3-row and 4-row examples are demonstrated

9-43

3-Row Flow Table Example (1/2)

- Three states require two binary variables
- Outputs are omitted for simplicity
- Adjacent info. are represented by a transition diagram
- a and c are still not adjacent in such an assignment !!
 - Impossible to make all states adjacent if only 3 states are used

(a) Flow table

(b) Transition diagram

3-Row Flow Table Example (2/2)

- A race-free assignment can be obtained if we add an extra row to the flow table
 - Only provide a race-free transition between the stable states
- The transition from a to c must now go through d
 - $00 \rightarrow 10 \rightarrow 11$ (no race condition)

4-Row Flow Table Example (1/2)

- Sometimes, just one extra row may not be sufficient to prevent critical races
 - More binary state variables may also required
- With one or two diagonal transitions, there is no way of using two binary variables that satisfy all adjacency

(b) Transition diagram

(a) Flow table

Outline

- Asynchronous Sequential Circuits
- Analysis Procedure
- Circuits with Latches
- Design Procedure
- Reduction of State and Flow Tables
- Race-Free State Assignment
- Hazards
- Design Example

0.40

Hazards

- Unwanted switching appears at the output of a circuit
 - Due to different propagation delay in different paths
- May cause the circuit to mal-function
 - Cause temporary false-output values in combinational circuits
 - Cause a transition to a wrong state in asynchronous circuits
 - Not a concern to synchronous sequential circuits
- Three types of hazards:

(a) Static 1-hazard

(b) Static 0-hazard

(c) Dynamic hazard

Circuits with Hazards

- Static hazard: a momentary output change when no output change should occur
- If implemented in sum of products:
 - no static 1-hazard → no static 0-hazard or dynamic hazard
- Two examples for static 1-hazard:

(b) NAND circuit

9-51

Hazard-Free Circuit

- Hazard can be detected by inspecting the map
- The change of input results in a change of covered product term
 - → Hazard exists
 - Ex: $111 \rightarrow 101$ in (a)
- To eliminate the hazard, enclose the two minterms in another product term
 - Results in redundant gates

Essential Hazards

- Besides static and dynamic hazards, another type of hazard in asynchronous circuits is called essential hazard
- Caused by unequal delays along two or more paths that originate from the same input
- Cannot be corrected by adding redundant gates
- Can only be corrected by adjusting the amount of delay in the affected path
 - Each feedback path should be examined carefully !!

0 55

Outline

- Asynchronous Sequential Circuits
- Analysis Procedure
- Circuits with Latches
- Design Procedure
- Reduction of State and Flow Tables
- Race-Free State Assignment
- Hazards
- Design Example

Recommended Design Procedure

- 1. State the design specifications
- 2. Derive a primitive flow table
- 3. Reduce the flow table by merging the rows
- 4. Make a race-free binary state assignment
- 5. Obtain the transition table and output map
- 6. Obtain the logic diagram using SR latches

0 57

Primitive Flow Table

- Design a negative-edge-triggered T flip-flop
- Two inputs: T(toggle) and C(clock)
 - T=1: toggle, T=0: no change
- One output: Q

	In	out	Output	
State	Т	С	Q	Comments
а	1	1	0	Initial output is 0
b	1	0	1	After state a
С	1	1	1	Initial output is 1
d	1	0	0	After state c
е	0	0	0	After states d or f
f	0	1	0	After states e or a
g	0	0	1	After states b or h
h	0	1	1	After states g or c

	TC					
	00	01	11	10		
a	-,-	f ,-	a), 0	b ,-		
b	g ,-	-,-	c ,-	(b) , 1		
с	- ,-	h ,-	©, 1	d ,-		
d	e,-	-,-	a ,-	(d), 0		
e	e), 0	f ,-	-,-	d ,-		
f	e ,-	(f) , 0	a ,-	- ,-		
g	(g), 1	h ,-	-,-	b ,-		
h	g ,-	(h), 1	c ,-	- ,-	9-	

