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UNIT 1 

INTRODUCTION 
 

Learning Objectives:Introduction: Definitions of a signal and a system, classification of 

signals, basic Operations on signals, elementary signals, Systems viewed as Interconnections of 

operations, properties of systems. 

 

Signal: 

A signal is a function representing a physical quantity or variable, and typically it contains information 

about the behaviour or nature of the phenomenon. 

For instance, in a RC circuit the signal may represent the voltage across the capacitor or the current flowing 

in the resistor. Mathematically, a signal is represented as a function of an independent variable ‘t’. Usually 

‘t’represents time. Thus, a signal is denoted by x(t). 

 

System: 

A system is a mathematical model of a physical process that relates the input (or excitation) 

signal to the output (or response) signal. 

Let x and y be the input and output signals, respectively, of a system. Then the system is viewed as a 

transformation (or mapping) of x into y. This transformation is represented by the mathematical notation 

 
y= T(x) ----------------------------------------------------------------------------------------------------------- (1.1) 

 
 

whereT is the operator representing some well-defined rule by which x is transformed into y. Relationship 

(1.1) is depicted as shown in Fig. 1-1(a). Multiple input and/or output signals are possible as shown in 

Fig. 1-1(b). We will restrict our attention for the most part in this text to the single-input, single-output 

case. 



Signals and Systems  

Dept of ECE METHODIST COLLEGE OF ENGINEERING & TECHNOLOGY 

 

 

 

 
 

 
 

Fig1.1 :System with single or multiple input and output signals 

 

 

Classification of signals : 

 
 

Basically seven different classifications are there: 

 
 

1. Continuous-Time and Discrete-Time Signals 

2. Analog and Digital Signals 

3. Real and Complex Signals 

4. Deterministic and Random Signals 

5. Even and Odd Signals 

6. Periodic and Nonperiodic Signals 

7. Energy and Power Signals 

 

 

 
1. Continuous-Time and Discrete-Time Signals 

 
 

A signal x(t) is a continuous-time signal if t is a continuous variable. If t is a discrete variable, that is, x(t) 

is defined at discrete times, then x(t) is a discrete-time signal. Since a discrete-time signal is defined at 

discrete times, a discrete-time signal is often identified as a sequence of numbers, denoted by {x,) or x[n], 

where n = integer. Illustrations of a continuous- time signal x(t) and of a discrete-time signal x[n] are 

shown in Fig. 1-2. 
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Fig 1.2 Graphical representation of (a) continuous-time and (b) discrete-time signals 

 
 

2. Analog and Digital Signals 

 

If a continuous-time signal x(t) can take on any value in the continuous interval (a, b), where a may be - ∞ and 

b may be +∞ then the continuous-time signal x(t) is called an analog signal. If a discrete-time signal x[n] can 

take on only a finite number of distinct values, then we call this signal a digital signal. 

 
3. Real and Complex Signals 

 

A signal x(t) is a real signal if its value is a real number, and a signal x(t) is a complex signal if its value is a 

complex number. A general complex signal x(t) is a function of the form 

 
x (t) = x1(t) + jx2 (t) ------------------------------------------------------------------------------------------------ (1.2) 

 

where x1 (t) and x2 (t) are real signals and j = √-1 

Note that in Eq. (1.2) ‘t’represents either a continuous or a discrete variable. 

 
 

Deterministic and Random Signals: 

 

Deterministic signals are those signals whose values are completely specified for any given time. Thus, a 

deterministic signal can be modelled by a known function of time ‘t’. 

Random signals are those signals that take random values at any given time and must be characterized 

statistically. 
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Even and Odd Signals: 

 

A signal x ( t ) or x[n] is referred to as an even signal if x (- t) = x(t) 

 

x [-n] = x [n] -------------------------------------------------------------------------------------------------------- (1.3) 

 

A signal x ( t ) or x[n] is referred to as an odd signal if x(-t) = - x(t) 
 
 

x[- n] = - x[n] 

 

Examples of even and odd signals are shown in Fig. 1.3. 

 

--------------(1.4) 

 

 

 

 
 

 
 

Figuer1.3 Examples of even signals (a and b) and odd signals (c and d). 

 

Any signal x(t) or x[n] can be expressed as a sum of two signals, one of which is even and one of which is 

odd. That is, 

 
-------(1.5) 
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Where, 
 

 

 

 

 

 

 

 
 -----(1.6) 

 

Similarly for x[n], 

 

 

X[n] = Xe[n] + Xo[n] 

 

-------(1.7) 

 

Where, 

 

 

Xe[n]=1/2{x[n] +x[-n]} 

Xo[n]=1/2{x[n] -x[-n]} 

 

 
-------(1.8) 

 
 

Note that the product of two even signals or of two odd signals is an even signal and that the product of an 

even signal and an odd signal is an odd signal. 

 
Periodic and Nonperiodic Signals : 

 

A continuous-time signal x ( t ) is said to be periodic with period T if there is a positive nonzero value of T 

for which 

………(1.9) 

An example of such a signal is given in Fig. 1-4(a). From Eq. (1.9) or Fig. 1-4(a) it follows that 

 
---------------------------(1.10) 

for all t and any integer m. The fundamental period T, of x(t) is the smallest positive value of 

T for which Eq. (1.9) holds. Note that this definition does not work for a constant 
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Figure 1.4 Examples of periodic signals. 

 

signal x(t) (known as a dc signal). For a constant signal x(t) the fundamental period is undefined since x(t) is 

periodic for any choice of T (and so there is no smallest positive value). Any continuous-time signal which is 

not periodic is called a nonperiodic (or aperiodic) signal. 

 
Periodic discrete-time signals are defined analogously. A sequence (discrete-time signal) x[n] is periodic with 

period N if there is a positive integer N for which 

 

  ……….(1.11) 

An example of such a sequence is given in Fig. 1-4(b). From Eq. (1.11) and Fig. 1-4(b) it follows that 

…………..(1.12) 
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for all n and any integer m. The fundamental period No of x[n] is the smallest positive integer N for which 

Eq.(1.11) holds. Any sequence which is not periodic is called a nonperiodic (or aperiodic sequence). 

 
Note that a sequence obtained by uniform sampling of a periodic continuous-time signal may not be periodic. 

Note also that the sum of two continuous-time periodic signals may not be periodic but that the sum of two 

periodic sequences is always periodic. 

 
Energy and Power Signals : 

 

Consider v(t) to be the voltage across a resistor R producing a current i(t). The instantaneous power p(t) per 

ohm is defined as 

 

 
… ………(1.13) 

Total energy E and average power P on a per-ohm basis are 

  ……(1.14) 

For an arbitrary continuous-time signal x (t), the normalized energy content E of x(t) is defined as 
 

 

…………………(1.15) 

The normalized average power P of x(t) is defined as 
 

 

 

…………….(1.16) 

Similarly, for a discrete-time signal x[n], the normalized energy content E of x[n] is defined as 

 
 

The normalized average power P of x[n] is defined as 
 

 

…………….(1.17) 

 

 

 

 
…………….(1.18) 
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Based on definitions (1.15) to (1.18), the following classes of signals are defined: 

 

1. x(t) (or x[n]) is said to be an energy signal (or sequence) if and only if 0 < E < m, and so P = 0. 

2. x(t) (or x[n]) is said to be a power signal (or sequence) if and only if 0 < P < m, thus implying that E = m. 

3. Signals that satisfy neither property are referred to as neither energy signals nor power signals. 

Note that a periodic signal is a power signal if its energy content per period is finite, and then the average 

power of this signal need only be calculated over a period 

 
Basic Operations on signals 

 
 

The operations performed on signals can be broadly classified into two kinds 

 

 Operations on dependent variables 

 Operations on independent variables 

 

Operations on dependent variables 

 

The operations of the dependent variable can be classified into five types: amplitude scaling, addition, 

multiplication, integration and differentiation. 

 
Amplitude scaling 

 

Amplitude scaling of a signal x(t) given by equation 1.19, results in amplification of 

x(t) if a >1, and attenuation if a <1. 

y(t) =ax(t) ............................................................................................................................................. (1.20) 
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Figure 1.5 Amplitude scaling of sinusoidal signal 

Addition 
 
 

The addition of signals is given by equation of 1.21. 

y(t) = x1(t) + x2 (t) ……(1.21) 
 

 
 

 

 
Figure 1.6 Example of the addition of a sinusoidal signal with a signal of constant amplitude 

 

Physical significance of this operation is to add two signals like in the addition of the background music along 

with the human audio. Another example is the undesired addition of noise along with the desired audio signals. 

 
Multiplication 
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The multiplication of signals is given by the simple equation of 1.22. 

 

y(t) = x1(t).x2 (t) .................................................................................................................................... (1.22) 
 

 

 

 
 

Figure 1.7 Example of multiplication of two signals 

 

 

 
Differentiation 

 

The operation of differentiation gives the rate at which the signal changes with respect to time, and can be 

computed using the following equation, with Δt being a small interval of time. 

If a signal doesnt change with time, its derivative is zero, and if it changes at a fixed rate with time, its 

derivative is constant. This is evident by the example given in figure 1.8. 
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Figure 1.8 Differentiation of Sine – Cosine 

 

 

 

Operations on independent variables 

 
 

Time scaling 

 

Time scaling operation is given by equation 1.26 

y(f) = x(af) ............................................................................................................................ 1.26 

This operation results in expansion in time for a<l and com pressionintime for a>1.as evident from the ex amp1es 

of figure 1.10. 
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Figure 1.10 Examples of time scaling of a continuous time signal 

 

An example of this operation is the compression or expansion of the time scale that results in the „fast- 

forward’ or the „slow motion’ in a video, provided we have the entire video in some stored form. 

 
Time reflection 

 

Time reflection is given by equation (1.27), and some examples are contained in fig1.11. 

y(t) = x(−t) ................................................................................................................................................ 1.27 

(a) 
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(b) 

Figure 1.11 Examples of time reflection of a continuous time signal 
 
 

Time shifting 

 

The equation representing time shifting is given by equation (1.28), and examples of this operation are given 

in figure 1.12. 

y(t) x(t- t0) ....................................................................................................................................................... 1.28 
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Figure 1.12 Examples of time shift of a continuous time signal 

Time shifting and scaling 

The combined transformation of shifting and scaling is contained in equation (1.29), along with examples in 

figure 1.13. Here, time shift has a higher precedence than time scale. 

y(t) x(at –t0) .................................................................................................................................................... 1.29 
 

 

t{time in seconds} t (time in seconds} t {time in seconds) 

 
(a) 
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(b) 

Figure 1.13 Examples of simultaneous time shifting and scaling. The signal has to be shifted first 

and then time scaled. 

 
Elementary signals 

 
 

Exponential signals: 

 

The exponential signal given by equation (1.29), is a monotonically increasing function if 

a> 0, and is a decreasing function if a < 0. 
 
 

……………………(1.29) 

It can be seen that, for an exponential signal, 
 

 

 

 

 

 

 

…………………..(1.30) 

Hence, equation (1.30), shows that change in time by ±1/ a seconds, results in change in magnitude by e±1 . 

The term 1/ a having units of time, is known as the time-constant. Let us consider a decaying exponential 

signal 

 

  ……………(1.31) 
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This signal has an initial value x(0) =1, and a final value x(∞) = 0 . The magnitude of this signal at five times 

the time constant is, 

 

 

  …………….(1.32) 

 
while at ten times the time constant, it is as low as, 

 

 
 

……………(1.33) 

 

It can be seen that the value at ten times the time constant is almost zero, the final value of the signal. Hence, 

in most engineering applications, the exponential signal can be said to have reached its final value in about ten 

times the time constant. If the time constant is 1 second, then final value is achieved in 10 seconds!! We have 

some examples of the exponential signal in figure 1.14. 

 

 

 

 

 
The sinusoidal signal: 



Signals and Systems  

Dept of ECE METHODIST COLLEGE OF ENGINEERING & TECHNOLOGY 

 

 

 

 

The sinusoidal continuous time periodic signal is given by equation 1.34, and examples are given in figure 1015 
 

 

The different parameters are: Angular frequency co 2nfin radians, 

Frequency fin Hertz, (cycles per second) Amplitude A in Volts (or Amperes) Period Tin seconds 

 

 

 
The complex exponential: 

We now represent the complex exponential using the Euler's identity 

 

 

………….(1.35) 

to represent sinusoidal signals. We have the complex exponential signal given by equation (1.36) 
 
 
 
 
 

………(1.36) 
 
 

Since sine and cosine signals are periodic, the complex exponential is also periodic with the same period as 

sine or cosine. From equation (1.36), we can see that the real periodic sinusoidal signals can be expressed as: 

 
Let us consider the signal x(t) given by equation (1.38). The sketch of this is given in fig 1.15 

 

 

 

 

 

 

 
………………..(1.37) 

 

 
 

…………………..(1.38) 
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The unit impulse: 

 

The unit impulse usually represented as δ (t) , also known as the dirac delta function, is given by, 

                                        …….(1.38) 

From equation (1.38), it can be seen that the impulse exists only at t = 0 , such that its area is 1. This is a 

function which cannot be practically generated. Figure 1.16, has the plot of the impulse function 
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The unit step: 

 

The unit step function, usually represented as u(t) , is given by, 

 

……………….(1.39) 
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Fig 1.17 Plot of the unit step function along with a few of its transformations 

The unit ramp: 

The unit ramp function, usually represented as r(t) , is given by, 

 

 

 

 

 

 

……………(1.40) 
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Figure1.18 Plot of the unit ramp function 
 
 

The signum function: 

 
 

The signum function, usually represented as sgn(t) , is given by 

 

  000 000000000 000000000 …………(1.41) 
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Figure 1.19 Plot of the unit signum function along with a few of its transformations 

System viewed as interconnection of operation: 

 
 

This article is dealt in detail again in chapter 2/3. This article basically deals with system connected in series or 

paralleL Further these systems are connected with adders/subtractor, multipliers etc. 

 
Properties of system: 

 

In this article discrete systems are taken into account. The same explanation stands for continuous time systems 

also. 

 
The discrete time system: 

 
 

The discrete time system is a device which accepts a discrete time signal as its input, 

transforms it to another desirable discrete time signal at its output. 
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Stability 

A system is stable if 'bounded input results in a bounded output'. This condition, denoted by BIBO, 

Hence, a finite input should produce a finite output, if the system is stable. Some examples of stable and 

unstable systems are given in figure 1.21 

 
Memory 

The system is memory-less if its instantaneous output depends only on the current input. In memory-less 

systems, the output does not depend on the previous or the future input 

 
Causality: 

A system is causal, if its output at any instant depends on the current and past values of input. The 

output of a causal system does not depend on the future values of input. 

 

 

 

 

 

 

 

 

 

Invertibility: 

A system is invertible if, 
 

 

 

 

 

Linearity: 

The system is a device which accepts a signal, transforms it to another desirable signal, and is available 

at its output. We give the signal to the system, because the output is s 
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Time invariance: 

A system is time invariant, if its output depends on the input applied, and not on the time of application 

of the input. Hence, time invariant systems, give delayed outputs for delayed inputs. 
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UNIT 2 

 
Time-domain representations for LTI systems – 1 

 
Learning Objectives:Time-domain representations for LTI systems – 1: Convolution, impulse 

response representation, Convolution Sum and Convolution Integral. 

 
Introduction: 

 

The Linear time invariant (LTI) system: 

Systems which satisfy the condition of linearity as well as time invariance are known as linear time 

invariant systems. Throughout the rest of the course we shall be dealing with LTI systems. If the output 

of the system is known for a particular input, it is possible to obtain the output for a number of other 

inputs. We shall see through examples, the procedure to compute the output from a given input-output 

relation, for LTI systems. 

 
 

 
 

Convolution: 
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A continuous time system as shown below, accepts a continuous time signal x(t) and gives out a 

transformed continuous time signal y(t). 

 
 

 

Figure 1: The continuous time system 

 
 

Some of the different methods of representing the continuous time system are: 

 
 

i) Differential equation 

ii) Block diagram 

iii) Impulse response 

iv) Frequency response 

v) Laplace-transform 

vi) Pole-zero plot 

 
 

It is possible to switch from one form of representation to another, and each of the representations is 

complete. Moreover, from each of the above representations, it is possible to obtain the system 

properties using parameters as: stability, causality, linearity, invertibility etc. We now attempt to develop 

the convolution integral. 

 
Impulse Response 

The impulse response of a continuous time system is defined as the output of the system when its input 

is an unit impulse, δ (t) . Usually the impulse response is denoted by h(t) . 
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Figure 2: The impulse response of a continuous time system 

Convolution Sum: 

We now attempt to obtain the output of a digital system for an arbitrary in input x[n], from the 

knowledge of the system impulse response h[n]. 

 

 

 

y[n] = x[n]* h[n] 
 
 

 
 
 

 

 

Convolution Integral: 
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We now attempt to obtain the output of a continuous time/Analog digital system for an arbitrary input 

x(t), from the knowledge of the system impulse response h(t), and the properties of the impulse response 

of an LTI system. 

 
 

 

 
 

 
 

Methods of evaluating the convolution integral: (Same as Convolution sum) 

Given the system impulse response h(t), and the input x(t), the system output y(t), is given by the 

convolution integral: 
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Some of the different methods of evaluating the convolution integral are: Graphical representation, 

Mathematical equation, Laplace-transforms, Fourier Transform, Differential equation, Block diagram 

representation, and finally by going to the digital domain. 
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Unit 3 

Time-Domain Representations For LTI Systems – 2 

 
Learning Objectives:Time-domain representations for LTI systems – 2: Properties of 

impulse response representation, Differential and difference equation Representations, Block diagram 

representations. 

 

 

Time domain representation of LTI Systems 

• Impulse response: characterizes the behavior of any LTI system 

• Linear constant coefficient differential or difference equation: input output behavior 

• Block diagram: as an interconnection of three elementary operations 

Differential and Difference equation 

• General form of differential equation is 
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Block diagram representations 

• A block diagram is an interconnection of elementary operations that act on the input signal 

• This method is more detailed representation of the system than impulse response or 

differential/difference equation representations 

• The impulse response and differential/difference equation descriptions represent only the input-output 

behavior of a system, block diagram representation describes how the operations are ordered 

• Each block diagram representation describes a different set of internal computations used to determine 

the system output 
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• Block diagram consists of three elementary operations on the signals: 

– Scalar multiplication: y(t) = cx(t) or y[n] = x[n], where c is a 

scalar 

– Addition: y(t) = x(t)+w(t) or y[n] = x[n]+w[n]. 

• Block diagram consists of three elementary operations on the signals 

 
Integration for continuous time LTI system: 

Time shift for discrete time LTI system: y[n] = x[n−1] 

• Scalar multiplication: y(t) = cx(t) or y[n] = x[n], where c is a scalar 
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Direct form1 
 

 

 

 
 

Example 1: Direct form I 

Examples 

Example 1 

• Consider the system described by the block diagram as in Figure 1.10 

• Consider the part within the dashed box 

• The input x[n] is time shifted by 1 to get x[n−1] and again time shifted 

by one to get x[n−2]. The scalar multiplications are carried out and they are added to get w[n] and is 

given by 

w[n] = b0x[n]+b1x[n−1]+b2x[n−2]. 

• Write y[n] in terms of w[n] as input y[n]=w[n]−a1y[n−1]−a2y[n−2] 

• Put the value of w[n] and we get y[n]=−a1y[n−1]−a2y[n−2]+b0x[n] 

+b1x[n−1]+b2x[n−2] 

and y[n]+a1y[n−1]+a2y[n−2]= b0x[n]+b1x[n−1]+b2x[n−2] 
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• The block diagram represents an LTI system 

Example 2 

• Consider the system described by the block diagram and its difference 

equation is y[n]+(1/2)y[n−1]−(1/3)y[n−3]= x[n]+2x[n−2] 

Example 3 

• Consider the system described by the block diagram and its difference 

equation is y[n]+(1/2)y[n−1]+(1/4)y[n−2]= x[n−1] 

 

 

Block diagram representation is not unique, direct form II structure of 

Example 1 

• We can change the order without changing the input output behavior 

Let the output of a new system be f [n] and given input x[n] are related 

by 

f[n] = −a1 f [n−1]−a2 f [n−2]+x[n] 

• The signal f [n] acts as an input to the second system and output of 

second system is 

y[n] = b0 f [n]+b1 f [n−1]+b2 f [n−2]. 
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• The block diagram representation of an LTI system is not unique 

Example 2: Direct form I 

 

 
 

Direct form II 
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UNIT 4 

Fourier Representation for Signals – 1 
 

 

 

Learning Objectives: Introduction, Discrete time and continuous time Fourier series (derivation 

of series excluded) and their properties . 

 

INTRODUCTION 

 

 
In 1807, Jean Baptiste Joseph Fourier Submitted a paper of using trigonometric series to represent “any” 

periodic signal. But Lagrange rejected it! 

• In 1822, Fourier published a book “The Analytical Theory of Heat” 

• Fourier’s main contributions: Studied vibration, heat diffusion, etc. and found that a series of 

harmonically related sinusoids is useful in representing the temperature distribution through a body. 

• He also claimed that “any” periodic signal could be represented by Fourier series. 

• These arguments were still imprecise and it remained for P.L.Dirichlet in 1829 to provide precise 

conditions under which a periodic signal could be represented by a FS. 

• He however obtained a representation for aperiodic signals i.e., Fourier integral or transform 

• Fourier did not actually contribute to the mathematical theory of Fourier series. 

• Hence out of this long history what emerged is a powerful and cohesive framework for the analysis of 

continuous- time and discrete-time signals and systems 

• And an extraordinarily broad array of existing and potential application. 

• Let us see how this basic tool was developed and some important Applications 

 

 

Key Properties: for Input to LTI System 

 
 

1. To represent signals as linear combinations of basic signals. 
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2. Set of basic signals used to construct a broad class of signals. 

3. The response of an LTI system to each signal should be simple enough in structure. 

4. It then provides us with a convenient representation for the response of the system. 

5. Response is then a linear combination of basic signal 

 
 

Eigenfunctions and Values 

 
 
• One of the reasons the Fourier series is so important is that it represents a signal in terms of 

eigenfunctions of LTI systems. 

• When I put a complex exponential function like x(t) = ejωtthrough a linear time-invariant system, the 

output is y(t) = H(s)x(t) = H(s) ejωtwhere H(s) is a complex constant (it does not depend on time). 

• The LTI system scales the complex exponential ejωt
 

 

The Response of LTI Systems to Complex Exponentials 

 
 

Let us analyse how an LTI system responds to complex signals 

The Response of an LTI System: 

 

 

 

 
 

 

 

 
For CT (Continuous Times) and DT (Discrete Times) we can say that 
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Where the complex amplitude factor H(s), H(z) is called the frequency response of the system. The 

complex exponential estis called an eigenfunctionof the system, as the output is of the same form, 

differing by a scaling factor. 

 
The Response of LTI Systems to Complex Exponentials We know for LTI System Output and for CT 

Signals, 
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Eigenfunction and Superposition Properties 
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• Each system has its own constant H(s) that describes how it scales eigenfunctions. It is called the 

frequency response. 

• The frequency response H(ω)=H(s) does not depend on the input. 

• If we know H(ω), it is easy to find the output when the input is an eigenfunction. y(t)=H(ω)x(t) true 

when x is eigenfunction. 

• So, given the system response to an eigenfunction, H(s), we can compute the magnitude response |H(s)| 

and the phase response H(s). 

• These form the scaling factor and phase shift in the output, respectively. 

• The frequency of the output sinusoid will be the same as the frequency of the input sinusoid in any LTI 

system. 

• The LTI system scales and shifts sinusoids for both continuous and discrete signals and systems. 

 

 

 
Need for Frequency Analysis 

 
 

 Fast & efficient insight on signal’s building blocks. 

 Simplifies original problem - ex.: solving Part. Diff. Eqns. 

 Powerful & complementary to time domain analysis techniques. 

 Several transforms in DSPing: Fourier, Laplace, z, etc. 

 

Fourier Analysis : T 
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The following are its Applications Telecommunication- GSM/cellular phones, Electronics/IT - most DSP- 

based applications, Entertainment - music, audio, multimedia, Accelerator control (tune measurement for 

beam steering/control), Imaging, image processing, Industry/research - X-ray spectrometry, chemical 

analysis (FT spectrometry), PDE solution, radar design, Medical - (PET scanner, CAT scans & MRI 

interpretation for sleep disorder & heart malfunction diagnosis, Speech analysis (voice activated 

“devices”, biometry, …). 

 
Orthogonality of the Complex exponentials 

 
 

Definition : Two signals are orthogonal if their inner product is zero. The inner product is defined using 

complex conjugation when the signals are complex valued. For continuous-time signals with period T, 

the inner product is defined in terms of an integral as 

 
 

 

For discrete-time signals with period N, their inner product is defined as 
 

 
 

 

 
Orthogonality of the Complex exponentials 
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Harmonically Related Complex Exponentials 
 

 

 

 
Convergence for Fourier Fourier maintained that “any” periodic signal could be represented by a 

Fourier series The truth is that Fourier series can be used to represent an extremely large class of periodic 

signals. The question is that When a periodic signal x(t) does in fact have a Fourier series representation? 

Convergence One class of periodic signals: Which have finite energy over a single period. One class of 

periodic signals: Which have finite energy over a single period. The other class of periodic signals which 

satisfy Dirichlet conditions. Dirichlets Condition Condition 1: Krupa Over any period, x(t) must be 

absolutely integrable, i.e each coefficient is to be finite. Condition 2: In any finite interval, x(t) is of 

bounded variation; i.e., – There are no more than a finite number of maxima and minima during any single 

period of the signal Condition 3: In any finite interval, x(t) has only finite number of discontinuities. 

Furthermore, each of these discontinuities is finite. 
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Gibbs phenomenon: 

 
 

When a sudden change of amplitude occurs in a signal and the attempt is made to represent it by a finite 

number of terms (N) in a Fourier series, the overshoot at the corners (at the points of abrupt change) is 

always found. As the number of terms is increased, the overshoot is still found; this is called the Gibbs 

phenomenon. 

 
 

Properties of Fourier Representation The following are the Properties for the fourier Series 

 
 

1. Linearity Properties 

2. Translation or Time Shift Properties 

3. Frequency Shift Properties 

4. Scaling Properties 

5. Time Differentiation 

6. Time Domain Convolution 

7. Modulation or Multiplication theorem 

8. Parsevals Relationships 

 

 

 

 

1) Linearity Properties 
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The Fourier series coefficient ck are given by the same linear combination of FS coefficients for x(t) and 

y(t) 

 
2) Frequency Shift Properties : 

 
 

In other words frequency shift applied to a continuous-time signal results in a time shift of the 

corresponding sequence of Fourier series coefficients 
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3) Scaling Properties : 
 

 

 

 
 

4) Time Differentiation 
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5) Modulation or Multiplication theorem 
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6) Parsevals Relationships: 
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Fourier Representation for Continuous Time Signals 
 

 

 
 

 

 

 
 

Introduction Fourier Representation for Continuous Time Vs Discrete Time Signals 

 

 

 
Some Important Differences 
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• DTFS is a finite series while FS is an infinite series representation. Hence mathematical convergence 

issues are not there in DTFS. 

• Discrete-time signal x[n] is periodic with period N. i.ex[n] = x[n+N] 

 
 

• The fundamental period is the smallest positive integer N for which the above holds and ωo= 2π/N and 

φk[n] = ejkωon= ejk(2π/N)n , k = 0, ±1, ±2,…. Etc. 

 

 

 

 

 

 

Discrete time Fourier Series 
 

 

 
These Equations play the same role for discrete time periodic signals as the Synthesis and Analysis 

Equations for Continuous time signals. akare referred to as the spectral coefficient of x[n]. These 
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coefficients specify a decomposition of x[n] into a sum of N harmonically related complex exponentials. 

We also observe that the graph nature both in Time domain and frequency domain are both discrete unlike 

in Fourier Series for continuous times 
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Unit 5 

Fourier Representation for Signals 
 

 

 

Learning Objectives:Fourier representation for signals – 2: Discrete and continuous Fourier 

transforms(derivations of transforms are excluded) and their properties. 

Discrete-Time Fourier Transform (DTFT) 

Discrete-Time Fourier Transform 
 

 

 
Inverse Discrete-Time Fourier Transform 

 

 
 

 

 
 

Discrete-Time Fourier Transform Pair 

When we obtain the discrete-time signal via sampling an analog signal, the Nyquist frequency corresponds 

to the discrete-time frequency 1/2 . To show this, note that a sinusoid atthe Nyquist frequency 1/2Tshas a 

sampled waveform that equalsSinusoid at Nyquist Freqency 1/2T 

 
 

The exponential in the DTFT at frequency 1/2 equals  

meaning that the correspondence between analog and discrete-time frequency is established: 
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Analog, Discrete-Time Frequency Relationship 

 

 

Where fD and fA represent discrete-time and analog frequency variables, respectively. The aliasing figure 

(pg??) provides another way of deriving this result. As the duration of each pulse in the periodic sampling 

signal pTs(t) narrows, the amplitudes of the signal’s spectral repetitions, which are governed by the 

Fourier series coefficients (pg??) of pTs(t) , become increasingly equal.Thus, the sampled signal’s 

spectrum becomes periodic with period1/ Ts Thus, the Nyquist frequency 1/2Ts orresponds to the 

frequency 1/2 . The inverse discrete-time Fourier transform is easily derived from the following 

relationship: 

 

 

 

 

 

 

 

 

 
Figure:Discrete-Time Fourier Transform Properties 

 
 

Therefore, we find that 
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Fourier Transform Pairs in Discrete Time 

 

 

 
The Fourier transform pairs in discrete-time are 

 

 
 

 

 
Fourier Transform Pairs in Discrete Time 

 

 
 

 

 
Continuous-Time Fourier Transform (CTFT) 

Introduction 

 
 

Due to the large number of continuous-time signals that are present, the Fourier series provided us the 

first glimpse of how me we may represent some of these signals in a general manner: as a superpostion 

of a number of sinusoids. Now, we can look at a way to represent continuous-time nonperiodic signals 

using the same idea of superposition. Below we will present the Continuous-Time Fourier Transform 

(CTFT), also referred to as just the Fourier Transform (FT). Because the CTFT now deals with 

nonperiodic signals, we must now find a way to include all frequencies in the general equations. 
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Figure: The spectrum of a length-ten pulse is shown. Can you explain the rather 

complicated appearance of the phase? 

 
Equations 

Continuous-Time Fourier Transform 
 

 

 

 
Inverse CTFT 
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The above equations for the CTFT and its inverse come directly from the Fourier series and our 

understanding of its coefficients. For the CTFT we simply utilize integration rather than summation to be 

able to express the aperiodic signals. This should make sense since for the CTFT we are simply extending 

the ideas of the Fourier series to include nonperiodic signals, and thus the entire frequency spectrum. Look 

at the Derivation of the Fourier Transform for a more in depth look at this. 

 
Properties of the Continuous-Time Fourier Transform 

This module will look at some of the basic properties of the Continuous-Time Fourier Transform (CTFT). 

The first section contains a table that illustrates the properties, and the sections following it discuss a few 

of the more interesting properties in more depth. In the table, click on the operation name to be taken to 

the properties explanation found later on this page. Look at this module for an expanded table of more 

Fourier transform properties. note: We will be discussing these properties for aperiodic, continuous-time 

signals but understand that very similar properites hold for discrete-time signals and periodic signals as 

well 

 
Table of CTFT Properties 
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Fourier Transform Properties 

Linearity 

The combined addition and scalar multiplication properties in the table above demonstrate the basic 

property of linearity. What you should see is that if one takes the Fourier transform of a linear combination 

of signals then it will be the same as the linear combination of the Fourier transforms of each of the 

individual signals. This is crucial when using a table of transforms to find the transform of a more 

complicated signal. 

We will begin with the following signal: 
 
 

 
Now, after we take the Fourier transform, shown in the equation below, notice that 

the linear combination of the terms is unaffected by the transform. 

 

 
Symmetry 

Symmetry is a property that can make life quite easy when solving problems involving Fourier transforms. 

Basically what this property says is that since a rectangular function in time is a sinc function in frequency, 

then a sincfucntion in time will be a rectangular function in frequency. This is a direct result of the 

similarity between the forward CTFT and the inverse CTFT. The only difference is the scaling by 2_ and 

a frequency reversal. 

Time Scaling 

This property deals with the effect on the frequency-domain representation of a signal if the time variable 

is altered. The most important concept to understand for the time scaling property is that signals that are 

narrow in time will be broad in frequency and vice versa. The simplest example of this is a delta function, 

a unit pulse (pg??) with a very small duration, in time that becomes an infinite-length constant function in 

frequency. The table above shows this idea for the general transformation from the time-domain to the 

frequency-domain of a signal. You should be able to easily notice that these equations show the 

relationship mentioned previously: if the time variable is increased then the frequency range will be 

decreased. 
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Time Shifting 

Time shifting shows that a shift in time is equivalent to a linear phase shift in frequency. Since the 

frequency content depends only on the shape of a signal, which is unchanged in a time shift, then only the 

phase spectrum will be altered. This property can be easily proved using the Fourier Transform, so we 

will show the basic steps below: 

We will begin by letting z (t) = f (t −). Now let us take the Fourier transform 

with the previous expression substitued in for z (t). 

 

 
Now let us make a simple change of variables, where _ = t −_ . Through the calculations below, you 

can see that only the variable in the exponential are altered thus only changing the phase in the 

frequency domain. 

 

 
 

 

 
Modulation (Frequency Shift) 

Modulation is absolutely imperative to communications applications. Being able to shift a signal to a 

different frequency, allows us to take advantage of different parts of the electromagnetic spectrum is what 

allows us to transmit television, radio and other applications through the same space without significant 

interference. The proof of the frequency shift property is very similar to that of the time shift however, 

here we would use the inverse Fourier transform in place of the Fourier transform. Since we went through 

the steps in the previous, time-shift proof, below we will just show the initial and final step to this proof: 

 

 
Now we would simply reduce this equation through another change of variables and simplify 

the terms. Then we will prove the property experssed in the table above 
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Convolution 

Convolution is one of the big reasons for converting signals to the frequency domain, since convolution 

in time becomes multiplication in frequency. This property is also another excellent example of symmetry 

between time and frequency. It also shows that there may be little to gain by changing to the frequency 

domain when multiplication in time is involved. We will introduce the convolution integral here, but if 

you have not seen this before or need to refresh your memory, then look at the continuous-time 

convolution module for a more in depth explanation and derivation 

 

 

 
Time Differentiation 

Since LTI systems can be represented in terms of differential equations, it is apparent with this property 

that converting to the frequency domain may allow us to convert these complicated 

differential equations to simpler equations involving multiplication and addition. This is often looked at 

in more detail during the study of the Laplace Transform. 
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Unit 6 

Applications Of Fourier Representations 
 

 

Learning Objectives:Applications of Fourier representations: Introduction, Frequency 

response of LTI systems, Fourier transform representation of periodic signals, Fourier transform 

representation of discrete time signals. Sampling theorm and Nyquist rate. 
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FT FOR PERIODIC SIGNALS: For analysing Discrete time periodic and a periodic signals DTFT is 

used. As in continuous time case, DT periodic signals can be incorporated within the framework of the 

DTFT, by interpreting the transform of periodic signal as an impulse train in the frequency domain 

• Fourier Transform from Fourier series 
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Fourier Transform from Fourier series In order to check the validity of the above expression let us 

use the synthesys equation. 

 
 

Fourier Transform from Fourier series Note that any interval of length 2π includes exactly one pulse 

in the above analysis eqn. Hence if the integral interval is chosen includes one pulse located at ωo+2πr, 

then 

 

Now consider a periodic sequence x[n] with period N its DTFS representation is 
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So that the FS can be directly constructed from 

its coefficient. To verify the above equation is correct note that x[n] in the above is a linear combination 

of and thus must be a combination of transforms 

 
In this case, the Fourier transform is 

 

 

 
 

So that the FS can be directly constructed from its coefficient. To verify the above equation is correct 

note that x[n] in the above is a linear combination of and thus must be a combination of transforms 

Fourier Transform from Fourier series 

 
Suppose we chose the summation of interval as k=0,1……N, so that 

 

 

 

 
Hence x[n] is a linear combination of signals as initial x[n]. With ω0 =0,2π/N, 4π/N,……. (N-1)2π/N. 

The waveforms are depicted as 
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Example 1 
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Summaries Fourier in LTI 

• The LTI system scales the complex exponential eiωt. 

• Each system has its own constant H(ω) that describes how it scales eigenfunctions. It is called the 

frequency response. 

• The frequency response H(ω) does not depend on the input. It is another way to describe a system, like 

(A, B, C, D), h, etc. 

• If we know H(ω), it is easy to find the output when the input is an eigenfunction. y(t)=H(ω)x(t) true 

when x is eigenfunction! 

 
 

Differential and Difference Equation Descriptions Frequency Response is the system‟s steady state 

response to a sinusoid. In contrast to differential and difference-equation descriptions for a system, the 

frequency response description cannot represent initial conditions, it can only describe a system in a 

steady state condition. The differential-equation representation for a continuous-time system is 
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Sampling 

In this chapter let us understand the meaning of sampling and which are the different methods of 

sampling. There are the two types. Sampling Continuous-time signals and Sub-sampling. In this again 

we have Sampling Discrete-time signals. Sampling Continuous-time signals Sampling of continuous- 

time signals is performed to process the signal using digital processors. The sampling operation 

generates a discrete-time signal from a continuous-time signal.DTFT is used to analyze the effects of 
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uniformly sampling a signal.Let us see, how a DTFT of a sampled signal is related to FT of the 

continuous-time signal. 

• Sampling: Spatial Domain: A continuous signal x(t) is measured at fixed instances spaced apart by an 

interval „Ƭ‟. The data points so obtained form a discrete signal x[n]=x[nƬ]. Here, ΔƬ is the sampling 

period and 1/ ΔƬ is the sampling frequency.Hence, sampling is the multiplication of the signal with an 

impulse signal. 

 

 
• Reconstruction theory 
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Sampling below the Nyquist rate 

 

Reconstruction below the Nyquist rate 
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Aliasing summary 

• We learned that we need to sample each oscillation period of the input signal ≥ two times for good 

reconstruction.(Nyquist Criteria) 

• The shifted version of X(jω) may overlap with each other if ωs(sampling frequency) is not large 

enough compared to the frequency content of X(jω). 

• Overlap in the shifted replicas of the original spectrum is termed Aliasing, which refers to the 

phenomenon of a high frequency component taking on the identity of a low-frequency one. 

FT of sampled signal for different sampling frequency 
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Subsampling: Sampling discrete-time signal 

• FT is also used in discrete sampling signal. 
 

• Let be a subsampled version x[n], where q is a positive integer. 
 

• Relating DTFT of y[n] to the DTFT of x[n], by using FT to represent x[n] as a sampled versioned of a 

continuous time signal x(t). 

• Expressing now y[n] as a sampled version of the sampled version of the same underlying CT x(t) 

obtained using a sampling interval q that associated with x[n] 

• We know to represent the sampling version of x[n] as the impulse sampled CT signal with sampling 

interval Ƭ. 
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UNIT 7 
 

Z TRANSFORMS-1 
 

Learning Objectives:Introduction, Z – transform, properties of ROC, Properties of Z – 

transforms, inversion of Z – transforms. 

Introduction 

 
The z-transform is a transform for sequences. Just like the Laplace transformtakes a function of t and 

replaces it with another function of an auxiliaryvariable s. The z-transform takes a sequence and replaces 

it with afunction of an auxiliary variable, z. The reason for doing this is that itmakes difference equations 

easier to solve, again, this is very like what happenswith the Laplace transform, where taking the Laplace 

transform makesit easier to solve differential equations. A difference equation is an equationwhich tells 

you what the k+2th term in a sequence is in terms of the k+1thand kth terms, for example. Difference 

equations arise in numerical treatmentsof differential equations, in discrete time sampling and when 

studyingsystems that are intrinsically discrete, such as population models in ecologyand epidemiology 

and mathematical modelling of mylinated nerves. 

 Generalizes the complex sinusoidal representations of DTFT to more generalized representation 

using complex exponential signals 

 It is the discrete time counterpart of Laplace transform 
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The z-Plane 

• Complex number z = re j is represented as a location in a complex plane (z plane) 

 

The z-transform 

 
 

• Let z = re j be a complex number with magnitude r and angle . 

• The signal x[n] = znis a complex exponential and x[n] = rncos(n)+jrnsin(n) 

• The real part of x[n] is exponentially damped cosine. 

• The imaginary part of x[n] is exponentially damped sine. 

• Apply x[n] to an LTI system with impulse response h[n], Then 

y[n] = H{x[n]} = h[n] ∗x[n] 
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𝑘=−∞ 

 

 

 

 

 
 

y[n] =∑∞ ℎ[𝑘]𝑥[𝑛 − 𝑘] 
 
 

• If x[n] = zn 

 

we get 
 

 
 

 

 

The z-transform is defined as 
 

 

 

 
we may write as 

 

 

 

 
You can see that when you do the z-transformit sums up all the sequence, and so the individual terms 

affect the dependence on z, but the resultingfunction is just a function of z, it has no k in it. It will become 

clearer later why we might do this 
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• This has the form of an eigen relation, where znis the eigen function and H(z) is the eigenvalue. 

• The action of an LTI system is equivalent to multiplication of the input by the complex number H(z). 

• IfH(z) = |H(z)|e j(z)then the system output is 

y[n] = |H(z)|e j(z)zn
 

 
 

• Usingz = re j we get 

y[n] = |H(re j)|rncos(n+(re j)+ j|H(re j)|rnsin(n+(re j) 

• Rewritingx[n] 

x[n] = zn= rncos(n)+ jrnsin(n) 

• If we compare x[n] and y[n], we see that the system modifies 

– the amplitude of the input by|H(re j)| and 

– shifts the phase by (re j) 

 
 
 
 

DTFT and the z-transform 

 
 

• Put the value of z in the transform then we get 
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• We see that H(re j) corresponds to DTFT of h[n]r−n. 

• The inverse DTFT of H(re j) must be h[n]r−n. 

• We can write 
 

• Multiplying h[n]r−nwith rngives 
 

 

 

• We can convert this equation into an integral over z by putting re j =z 

• Integration is over , we may consider r as a constant 

• We have 
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• Consider limits on integral 

–  varies from − to  

– ztraverses a circle of radius r in a counterclockwise direction 

We can write h[n] as 

 

 
where H is integration around the circle of radius |z| = r in a counter clockwise direction 

 

 
• The z-transform of any signal x[n] is 

 

• The inverse z-transform of is 
 

• Inverse z-transform expresses x[n] as a weighted superposition of complex exponentialsZn 

• The weights are 
 

 
 

• This requires the knowledge of complex variable theory. 

 

Convergence 

 

• Existence of z-transform: exists only if 
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converges 
 

 

Necessary condition: absolute summability of x[n]z−n, since |x[n]z−n|= |x[n]r−n|, the condition is 
 

 

 

 

 
• The range r for which the condition is satisfied is called the range of convergence (ROC) of the z-transform 

• ROC is very important in analyzing the system stability and behavior 

• We may get identical z-transform for two different signals and only ROC differentiates the two signals 

• The z-transform exists for signals that do not have DTFT. 

• existence of DTFT: absolute summability of x[n] 

• By limiting restricted values for r we can ensure that x[n]r−nis absolutely summable even though x[n] is 

not 

• Consider an example: the DTFT ofx[n] = nu[n] does not exists for 

|| >1 

• If r >, then r−ndecays faster than x[n] grows 

• Signal x[n]r−nis absolutely summable and z-transform exists 
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The z-Plane and DTFT 

• If x[n] is absolutely summable, then DTFT is obtained from the ztransform 

by setting r = 1 (z = e j), ie. X(e j) = X(z)|z=ej as shown 

in Figure 

 

 

 

 

Figure : DTFT and z-transform 
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Poles and Zeros 

• Commonly encountered form of the z-transform is the ratio of two polynomials in z−1 
 

 

 

 
• It is useful to rewrite X(z) as product of terms involving roots of the numerator and denominator 

polynomials 

 

where ˜b = b0/a0 

 
 

• Zeros: The ckare the roots of numerator polynomials 

• Poles: The dkare the roots of denominator polynomials 

• Locations of zeros and poles are denoted by ”o” and ”×” respectively 

 

 

Region of convergence (ROC) 

 

Properties of convergence 

• ROC is related to characteristics of x[n] 

• ROC can be identified from X(z) and limited knowledge of x[n] 

• The relationship between ROC and characteristics of the x[n] is used to find inverse z-transform 

 

Property 1: ROC can not contain any poles 

• ROC is the set of all z for which z-transform converges 

• X(z) must be finite for all z 
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• If p is a pole, then |H(p)| =  and z-transform does not converge at 

the pole 

• Pole can not lie in the ROC 

 

 
 

Property 2: The ROC for a finite duration signal includes entire z-plane except z = 0 

or/and z = 

• Let x[n] be nonzero on the interval n1 ≤n ≤n2. The z-transform is 

 

The ROC for a finite duration signal includes entire z-plane except z = 0 or/and z = 

• If a signal is causal (n2 >0) then X(z) will have a term containing z−1, hence ROC can not include z = 0 

• If a signal is non-causal (n1 <0) then X(z) will have a term containing powers of z, hence ROC can not 

include z = The ROC for a finite duration signal includes entire z-plane except z = 0 or/and z = 

• If n2 ≤0 then the ROC will include z = 0If n1 ≥0 then the ROC will include z = 

• This shows the only signal whose ROC is entire z-plane is x[n] = c[n],where c is a constant 

Finite duration signals 

• The condition for convergence is |X(z)| <




magnitude of sum of complex numbers ≤sum of individual magnitudes 
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• Magnitude of the product is equal to product of the magnitudes 

 

 
• split the sum into negative and positive time parts 

• Let 

 

 

 
• Note that X(z) = I−(z)+I+(z). If both I−(z) and I+(z) are finite, then X(z) if finite 

• If x[n] is bounded for smallest +ve constants A−, A+, r− and r+such That 

|x[n]| ≤A−(r−)n, n <0 

|x[n]| ≤A+(r+)n, n ≥0 

• The signal that satisfies above two bounds grows no faster than (r+)nfor +ve n and (r−)nfor −ve n 

• If the n <0 bound is satisfied then 
 

 

• Sum converges if |z| ≤ r− 

• If the n ≥ 0 bound is satisfied then 
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• Sum converges if |z| >r+ 

• If r+<|z|<r−, then both I+(z) and I−(z) converge and X(z) converges 

 
 

To summarize: 

• If r+ >r− then no value of z for which convergence is guaranteed 

• Left handed signal is one for which x[n] = 0 for n ≥ 0 

• Right handed signal is one for which x[n] = 0 for n < 0 

• Two sided signal that has infinite duration in both +ve and -ve directions 

• The ROC of a right-sided signal is of the form |z| >r+ 

• The ROC of a left-sided signal is of the form |z| <r− 

• The ROC of a two-sided signal is of the form r+ <|z| >r− 
 

Figure : ROC of left sided sequence 
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Figure: ROC of right sided sequence 

 

Figure: ROC of two sided sequence 
 

 
 

 

 

Figure : ROC of Example 1 
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Properties of z-transform 

• We assume that 
 

 

• General form of the ROC is a ring in the z-plane, so the effect of an operation on the ROC is described 

by the a change in the radii of ROC 

 

 

 

 
P1: Linearity 

• The z-transformof a sum of signals is the sumof individual z-transforms 

 

with ROC at least Rx ∩Ry 

 

P2: Time reversal 

 
 

• Time reversal or reflection corresponds to replacing z by z−1. Hence, if Rx is of the form a <|z| <b then 

the ROC of the reflected signal is a < 1/|z| <b or 1/b <|z| < 1/a 

 

 
If 

 

with ROC Rx 

Then 
 

 

 

with ROC 1/Rx 
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Proof: Time reversal 

• Let 
 

 

 

Let l = −n, then 
 

 
 

 

 

 
 

P3: Time shift 

• Time shift of no in the time domain corresponds to multiplication of z−noin the z-domain 

If 

 

with ROC Rx 

Then 
 

 

with ROC Rx except z = 0 or |z| = 








Time shift, no >0 

• Multiplication by z−nointroduces a pole of order no at z = 0 

• The ROC can not include z = 0, even if Rx does include z = 0 
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• If X(z) has a zero of at least order no at z = 0 that cancels all of the new poles then ROC can include z = 

0 

Time shift, no <0 

• Multiplication by z−no introduces no poles at infinity 

• If these poles are not canceled by zeros at infinity in X(z) then the ROC of z−noX(z) can not include |z| = 



Proof: Time shift 

• Let 
 

 

 

 

P4: Multiplication by n
 

• Let  be a complex number 

If 

 

with ROC Rx 

 
 

Then 
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with ROC ||Rx 
 

 

• ||Rx indicates that the ROC boundaries are multiplied by ||. 

• If Rx is a <|z| <b then the new ROC is ||a <|z| <||b 

• If X(z) contains a pole d, ie. the factor (z−d) is in the denominator then X(z ) has a factor (z−d) in the 

denominator and thus a pole atd. 

• If X(z) contains a zero c, then X(z/ ) has a zero at c 

• This indicates that the poles and zeros of X(z) have their radii changed by || 

 
• Their angles are changed by arg{} 

 

• If || =1 then the radius is unchanged and if  is +ve real number then the angle is unchanged 

 
 

Proof: Multiplication by n
 

• Let y[n] = nx[n] 
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P5: Convolution 

• Convolution in time domain corresponds to multiplication in the zdomain 

If 

     with ROC Rx 

 

with ROC Ry 

 

 

with ROC at least Rx ∩Ry 

• Similar to linearity the ROC may be larger than the intersection of Rx 

andRy 

 
 

Proof: Convolution 

• Let 
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P6: Differentiation in the z domain 

• Multiplication by n in the time domain corresponds to differentiation with respect to z and multiplication 

of the result by −z in the z-domain. 

If 

 
 

with ROC Rx Then 
 

 

 
 

• ROC remains unchanged 

 

with ROC Rx 

 

 

Proof: Differentiation in the z domain 

• We know 
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Differentiate with respect to z 

 

• Multiply with −z 
 
 

Then 
 

 
 

with ROC Rx 
 

 

Inverse z-transform 

 

Partial fraction method 

• In case of LTI systems, commonly encountered form of z-transform is 
 
 

 

 

 
Usually M <N 
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• If M >N then use long division method and express X(z) in the form 

 

where ˜B(z) now has the order one less than the denominator polynomial and use partial fraction method 

to find z-transform 

• The inverse z-transform of the terms in the summation are obtained from the transform pair and time shift 

property 

 

• If X(z) is expressed as ratio of polynomials in z instead of z−1 then convert into the polynomial of z−1
 

• Convert the denominator into product of first-order terms 
 

 

 

 
wheredkare the poles of X(z) 

 
 

 
For distinct poles 

• For all distinct poles, the X(z) can be written as 
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• Depending on ROC, the inverse z-transform associated with each term is then determined by using the 

appropriate transform pair 

• We get 

 

 

with ROC z >dkOR 

 

 

with ROC z <dk 

 

 

• For each term the relationship between the ROC associated with X(z) and each pole determines whether 

the right-sided or left sided inversetransform is selected 

 

 

For Repeated poles 

• If pole di is repeated r times, then there are r terms in the partial fraction expansion associated with that 

pole 

 
 

• Here also, the ROC of X(z) determines whether the right or left sided inverse transform is chosen 
 

 

 

withROC|z|>di 

• If the ROC is of the form |z| <di, the left-sided inverse z-transform is chosen, ie 
 
 



Signals and Systems  

Dept of ECE METHODIST COLLEGE OF ENGINEERING & TECHNOLOGY 

 

 

Deciding ROC 

• The ROC of X(z) is the intersection of the ROCs associated with the individual terms in the partial fraction 

expansion. 

• In order to chose the correct inverse z-transform, we must infer the ROC of each term from the ROC of 

X(z). 

• By comparing the location of each pole with the ROC of X(z). 

• Chose the right sided inverse transform: if the ROC of X(z) has the radius greater than that of the pole 

associated with the given term 

• Chose the left sided inverse transform: if the ROC of X(z) has the radius less than that of the pole 

associated with the given term 

 
Power series expansion 

 

 

• Express X(z) as a power series in z−1 or z as given in z-transform equation 

• The values of the signal x[n] are then given by coefficient associated with z−n
 

• Main disadvantage: limited to one sided signals 

• Signals with ROCs of the form |z| >a or |z| <a 

• If the ROC is |z| >a, then express X(z) as a power series in z−1and we get right sided signal 

• If the ROC is |z| <a, then express X(z) as a power series in z and we get left sided signal. 
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UNIT 8 
 

Z TRANSFORMS-2 
 

Learning Objectives:Transform analysis of LTI Systems, unilateral Z Transform and its 

application to solve difference equations 

 

 

The Transfer Function 

• We have defined the transfer function as the z-transform of the impulse response of an LTI system 
 

• Then we have y[n] = x[n] ∗h[n] and Y(z) = X(z)H(z) 

• This is another method of representing the system 

• The transfer function can be written as 
 

• This is true for all z in the ROCs of X(z) and Y(z) for which X(z) in nonzero 

• The impulse response is the z-transform of the transfer function 

• We need to know ROC in order to uniquely find the impulse response 

• If ROC is unknown, then we must know other characteristics such as stability or causality in order to 

uniquely find the impulse response 

 
Relation between transfer function and difference equation 
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• The transfer can be obtained directly from the difference-equation description of an LTI system 

• We know that 

 

 

• We know that the transfer function H(z) is an eigen value of the system associated with the eigen function 

zn, ie. ifx[n] = znthen the output of an LTI system y[n] = znH(z) 

• Put x[n−k] = zn−k and y[n−k] = zn−k H(z) in the difference equation, 

we get 

 

 

 
• We can solve for H(z) 

 

• The transfer function described by a difference equation is a ratio of polynomials in z−1 and is termed as 

a rational transfer function. 

• The coefficient of z−kin the numerator polynomial is the coefficient associated with x[n−k] in the 

difference equation 

• The coefficient of z−kin the denominator polynomial is the coefficient associated with y[n−k] in the 

difference equation 

• This relation allows us to find the transfer function and also find thedifference equation description for 

a system, given a rational function 

 
Transfer function 

• The poles and zeros of a rational function offer much insight into LTI system characteristics 

• The transfer function can be expressed in pole-zero form by factoring the numerator and denominator 

polynomial 
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• If ckand dkare zeros and poles of the system respectively and ˜b = b0/a0 is the gain factor, then 
 
 

 

 
• This form assumes there are no poles and zeros at z = 0 

• The pthorder pole at z = 0 occurs when b0 = b1 = . . . = bp−1 = 0 

• The lth order zero at z = 0 occurs when a0 = a1 = . . . = al−1 = 0 

• Then we can write H(z) as 
 

 

 

where ˜b = bp/al 

• In the example we had first order pole at z = 0 

• The poles, zeros and gain factor˜buniquely determine the transfer function 

• This is another description for input-output behavior of the system 

• The poles are the roots of characteristic equation 

 
 

Causality, stability and Inverse systems 

 

Causality 

• The impulse response of an LTI system is zero for n < 0 

• The impulse response of a causal LTI system is determined from the transfer function by using right 

sided inverse transforms 

• The pole inside the unit circle in the z-plane contributes an exponentially decaying term 

• The pole outside the unit circle in the z-plane contributes an exponentially increasing term 
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Stability 

• The system is stable: if impulse response is absolutely summable and DTFT of impulse response exists 

• The ROC must include the unit circle: the pole and unit circle together define the behavior of the system 
 

 

Figure: When the pole is inside the unit circle 
 

Figure: When the pole is outside the unit circle 
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Figure: Stability: When the pole is inside the unit circle 

 
 

• A stable impulse response can not contain any increasing exponential term 

• The pole inside the unit circle in the z-plane contributes right-sided exponentially decaying term 

• The pole outside the unit circle in the z-plane contributes left-sided exponentially decaying term 

 
 

Causal and stable system 

 
 

• Stable and causal LTI system: all the poles must be inside the unit circle 

• A inside pole contributes right sided or causal exponentially decaying system 

• A outside pole contributes either left sided decaying term which is not causal or right-sided exponentially 

increasing term which is not stable 

 
 

Figure : Stability: When the pole is outside the unit circle 



Signals and Systems  

Dept of ECE METHODIST COLLEGE OF ENGINEERING & TECHNOLOGY 

 

 

 

 
 
 

Figure : Location of poles for the causal and stable system 

 
 

• Example of stable and causal system: all the poles are inside the unit Circle 

 
 

Inverse system 

• Impulse response (hinv) of an inverse system satisfies hinv[n] ∗h[n] = [n] where h[n] is the impulse 

response of a system to be inverted 

• Take inverse z-transform on both sides gives 

 
 

Hinv(z)H(z) = 1 

Hinv(z) =1/H(z) 

 

• The transfer function of an LTI inverse system is the inverse of thetransfer function of the system that 

we desire to invert 

• If we write the pole-zero form of H(z) as 
 

 

 

 

 

 

where ˜b = bp/al 

• Then we can write Hinvas 
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• The zeros of H(z) are the poles of Hinv(z) 

• The poles of H(z) are the zeros of Hinv(z) 

• System defined by a rational transfer function has an inverse system 

• We need inverse systems which are both stable and causal to invert the distortions introduced by the 

system 

• The inverse system Hinv(z) is stable and causal if all poles are inside the unit circle 

• Poles of Hinv(z) are zeros of (z) 

• Inverse system Hinv(z): stable and causal inverse of an LTI system H(z) exists if and only if all the zeros 

of H(z) are inside the unit circle 

• The system with all its poles and zeros inside the unit circle is called as minimum-phase system 

• The magnitude response is uniquely determined by the phase response and vice-Vera 

• For a minimum-phase system the magnitude response is uniquely determined by the phase response and 

vice-versa 

Figure: Location of poles in a minimum-phase system 
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Unilateral z-transform 

 

• Useful in case of causal signals and LTI systems 

• The choice of time origin is arbitrary, so we may choose n = 0 as the time at which the input is applied 

and then study the response for times n ≥0 

 
Advantages 

• We do not need to use ROCs 

• It allows the study of LTI systems described by the difference equation with initial conditions 

 

Unilateral z-transform 

• The unilateral z-transform of a signal x[n] is defined as 

 

 

 
which depends only on x[n] for n ≥0 

• The unilateral and bilateral z-transforms are equivalent for causal signals 
 

 

 

Properties 

• The same properties are satisfied by both unilateral and bilateral ztransformswith one exception: the time 

shift property 
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• The time shift property for unilateral z-transform: Let w[n] = x[n−1] 

• The unilateral z-transform of w[n] is 
 

 

 

 
• The unilateral z-transform of w[n] is 

 

 
 

 
• A one-unit time shift results in multiplication by z−1 and addition of 

the constant x[−1] 

• In a similar way, the time-shift property for delays greater than unity is 
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• In the case of time advance, the time-shift property changes to 
 

 


	SIGNALS & SYSTEMS
	Sub Code : ES215EC

	UNIT 1
	Signal:
	System:
	Fig1.1 :System with single or multiple input and output signals
	1. Continuous-Time and Discrete-Time Signals
	Fig 1.2 Graphical representation of (a) continuous-time and (b) discrete-time signals

	Basic Operations on signals
	Operations on dependent variables

	Operations on independent variables
	Time scaling
	Figure 1.19 Plot of the unit signum function along with a few of its transformations
	Stability
	Memory
	Causality:
	Invertibility:
	Time invariance:


	UNIT 2
	Introduction:
	The Linear time invariant (LTI) system:
	Convolution:
	Figure 1: The continuous time system
	Impulse Response
	Figure 2: The impulse response of a continuous time system
	y[n] = x[n]* h[n]
	Methods of evaluating the convolution integral: (Same as Convolution sum)


	Unit 3
	Time domain representation of LTI Systems
	Differential and Difference equation
	Block diagram representations
	Examples Example 1
	Example 2
	Example 3


	UNIT 4
	INTRODUCTION
	Key Properties: for Input to LTI System
	Eigenfunctions and Values
	The Response of LTI Systems to Complex Exponentials
	Eigenfunction and Superposition Properties
	Need for Frequency Analysis
	Fourier Analysis : T
	Orthogonality of the Complex exponentials
	Orthogonality of the Complex exponentials
	Gibbs phenomenon:
	Properties of Fourier Representation The following are the Properties for the fourier Series
	1) Linearity Properties
	2) Frequency Shift Properties :
	3) Scaling Properties :


	Unit 5
	Discrete-Time Fourier Transform (DTFT)
	Discrete-Time Fourier Transform Pair
	Analog, Discrete-Time Frequency Relationship
	Figure:Discrete-Time Fourier Transform Properties
	Introduction
	Figure: The spectrum of a length-ten pulse is shown. Can you explain the rather complicated appearance of the phase?
	Properties of the Continuous-Time Fourier Transform
	Table of CTFT Properties
	Symmetry
	Time Scaling
	Time Shifting
	Modulation (Frequency Shift)
	Convolution
	Time Differentiation



	Unit 6
	Summaries Fourier in LTI
	frequency response.
	when x is eigenfunction!
	• Reconstruction theory
	Sampling below the Nyquist rate
	FT of sampled signal for different sampling frequency


	UNIT 7
	Introduction
	The z-Plane
	The z-transform

	DTFT and the z-transform
	Convergence
	converges

	The z-Plane and DTFT
	Poles and Zeros

	Region of convergence (ROC)
	Properties of convergence
	Finite duration signals

	Properties of z-transform
	P1: Linearity
	P2: Time reversal
	P3: Time shift
	Proof: Time shift
	P4: Multiplication by n
	Proof: Multiplication by n
	P5: Convolution
	Proof: Convolution
	P6: Differentiation in the z domain
	Proof: Differentiation in the z domain

	Inverse z-transform
	Partial fraction method
	For distinct poles
	For Repeated poles
	Deciding ROC
	Power series expansion


	UNIT 8
	The Transfer Function
	Relation between transfer function and difference equation

	Transfer function
	Causality, stability and Inverse systems
	Causality
	Stability
	Figure: When the pole is inside the unit circle
	Causal and stable system
	Figure : Stability: When the pole is outside the unit circle
	Inverse system

	Unilateral z-transform
	Advantages
	Unilateral z-transform

	Properties


