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Review: Time – Varying Fields 
 

In the dynamics case, we can distinguish between two regimes: 
 
 
Low Frequency (Slowly-Varying Fields) – The displacement 
current is negligible in the Maxwell’s equations, since 
 

  
 
High Frequency (Fast-Varying Fields) – The general set of 
Maxwell’s equations must be considered, with no approximations. 
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In the low frequency regime we use the complete set of Maxwell’s 
equations, but the displacement current is omitted 
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The concept of low frequency and slowly-varying phenomena is 
relative to the situation at hand.  Any disturbance (time-variation) of 
the electromagnetic field propagates at the speed of light.  If a 
length L is the maximum dimension of the system under study, the 
maximum propagation time for a disturbance is  

 

 

 

We can assume slow-varying fields if the currents are practically 
constant during this time period.  

For sinusoidal currents, with a period of oscillation T , we have  

Maximum Propagation Time 
Maximum Length

Phase velocity of light

t
vd

p
=

L

Period 

Frequency 

Wavelength 

T
f v

t
p

d= = >> <<
1 λ λand L



Electromagnetic Fields 

© Amanogawa, 2006 – Digital Maestro Series 27

The electric potential is now by itself insufficient to completely 
describe the time-varying electric field, because there is also a 
direct dependence on the magnetic field variations.  By recalling the 
definition of magnetic vector potential, we can derive a relationship 
between electric field and electric potential 
 
 
 
 

Time-Varying Fields Statics 
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We can also obtain an integral relation between electric field and 
magnetic flux, by integrating the curl of the electric field over a 
surface 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stoke’s Theorem Magnetic Flux  Φ ( t ) 
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In the electrostatic case, we do not need to distinguish between 
voltage and potential difference.  The voltage between two points is 
always defined as  

 
but in terms of potential φ we have 
 
 
 
 

Time-Varying Fields Statics 
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Note that for time-varying fields the line integral of the magnetic 
vector potential between two given points depends on the actual 
path of integration.  In general: 
 

 
 
Consider now the integral of the electric field along a closed path: 
 
 
 
 
 
 
 
 
The closed path could be a metallic wire which confines the current 
due to moving electric charge.  
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The line integral of the electric field gives the work necessary to 
move a unit charge along the path of integration, under the 
influence of time-varying electric and magnetic fields.   
 
For a closed wire loop at rest, the work necessary to move a unit 
charge once around the loop is 

 
 
 
 

Magnetic Flux 
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As a more general case, consider a wire loop in motion. The 
complete Lorentz force must be considered: 
 
 
 
 
 
 
 
 
 
 
 
 
If the velocity of motion is constant, note that 
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