
1

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Arrays in C

When we work with large number of data values we need that many number of different

variables. As the number of variables increases, the complexity of the program also increases and

so the programmers get confused with the variable names. There may be situations where we

need to work with large number of similar data values. To make this work more easy, C

programming language provides a concept called "Array".

An array is a special type of variable used to store multiple values of same data type at a

time.

An array can also be defined as follows...

An array is a collection of similar data items stored in continuous memory locations with

single name which are accessed by the reference indexed number is called array.

Declaration of an Array

In c programming language, when we want to create an array we must know the datatype of

values to be stored in that array and also the number of values to be stored in that array.

 We use the following general syntax to create an array...

datatypearrayName [size] ;

 Syntax for creating an array with size and initial values

datatypearrayName [size] = {value1, value2, ...} ;

 Syntax for creating an array without size and with initial values

datatypearrayName [] = {value1, value2, ...} ;

In the above syntax, the datatype specifies the type of values we store in that array and size

specifies the maximum number of values that can be stored in that array.

Example

int a [3] ;

2

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Here, the compiler allocates 6 bytes of continuous memory locations with single name 'a' and

tells the compiler to store three different integer values (each in 2 bytes of memory) into that 6

bytes of memory.

For the above declaration the memory is organized as follows...

 In the above memory allocation, all the three memory locations has a common name 'a'.

 So the accession of individual memory location is not possible directly.

 Hence compiler not only allocates the memory but also assigns a numerical reference

value to every individual memory location of an array.

 This reference number is called as "Index" or "subscript" or "indices".

Index values for the above example is as follows...

Accessing Individual Elements of an Array:

The individual elements of an array are identified using the combination of 'arrayName' and

'indexValue'.

We use the following general syntax to access individual elements of an array...

arrayName [indexValue] ;

For the above example the individual elements can be denoted as follows...

For example, if we want to assign a value to the second memory location of above array 'a', we

use the following statement...

a [1] = 100 ;

3

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

The result of above assignment statement is as follows...

Types of Arrays in C

In c programming language, arrays are classified into two types. They are as follows...

1. Single Dimensional Array / One Dimensional Array

2. Multi Dimensional Array

Single Dimensional Array

 In c programming language, single dimensional arrays are used to store list of values of

same datatype.

 In other words, single dimensional arrays are used to store a row of values.

 In single dimensional array, data is stored in linear form. Single dimensional arrays are

also called as one-dimensional arrays, Linear Arrays or simply 1-D Arrays.

Declaration of Single Dimensional Array

We use the following general syntax for declaring a single dimensional array...

datatypearrayName [size] ;

Example

introllNumbers [60] ;

The above declaration of single dimensional array reserves 60 continuous memory locations of 2

bytes each with the name rollNumbers and tells the compiler to allow only integer values into

those memory locations.

Initialization of Single Dimensional Array

We use the following general syntax for declaring and initializing a single dimensional array

with size and initial values.

datatypearrayName [size] = {value1, value2, ...} ;

4

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Example

int marks [6] = { 89, 90, 76, 78, 98, 86 } ;

The above declaration of single dimensional array reserves 6 continuous memory locations of 2

bytes each with the name marks and initializes with value 89 in first memory location, 90 in

second memory location, 76 in third memory location, 78 in fourth memory location, 98 in fifth

memory location and 86 in sixth memory location.

We can also use the following general syntax to intialize a single dimensional array without

specifying size and with initial values...

datatypearrayName [] = {value1, value2, ...} ;

The array must be initialized if it is created without specifying any size. In this case, the size of

the array is decided based on the number of values initialized.

Example

int marks [] = { 89, 90, 76, 78, 98, 86 } ;

charstudentName [] = "btechsmartclass" ;

In the above example declaration, size of the array 'marks' is 6 and the size of the array

'studentName' is 16.

This is because in case of character array, compiler stores one exttra character called \0 (NULL)

at the end.

Accessing Elements of Single Dimensional Array

 In c programming language, to access the elements of single dimensional array we use

array name followed by index value of the element that to be accessed.

 Here the index value must be enclosed in square braces. Index value of an element in an

array is the reference number given to each element at the time of memory allocation.

 The index value of single dimensional array starts with zero (0) for first element and

incremented by one for each element.

 The index value in an array is also called as subscript or indices.

We use the following general syntax to access individual elements of single dimensional array...

arrayName [indexValue]

5

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Example

marks [2] = 99 ;

In the above statement, the third element of 'marks' array is assinged with value '99'.

 Example Program for Single Dimensional Array:

Programm:

#include<stdio.h>

#include<conio.h>

int main()

{

inti,number[5];

clrscr();

printf(“Enter 5 number \n”);

for(i=0;i<5;i++)

scanf(“%d”,&numbers[i]);

printf(“Array elements are \n”);

for(i=0;i<5;i++)

printf(“%d\n”,numbers[i]);

getch();

return 0;

}

6

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Multi Dimensional Array
 An array of arrays is called as multi dimensional array.

 In simple words, an array created with more than one dimension (size) is called as multi

dimensional array.

 Multi dimensional array can be of two dimensional array or three dimensional array or

four dimensional array or more...

 Most popular and commonly used multi dimensional array is two dimensional array. The

2-D arrays are used to store data in the form of table. We also use 2-D arrays to create

mathematical matrices.

Declaration of Two Dimensional Array

We use the following general syntax for declaring a two dimensional array...

datatypearrayName [rowSize] [columnSize] ;

Example

intmatrix_A [2][3] ;

The above declaration of two dimensional array reserves 6 continuous memory locations of 2

bytes each in the form of 2 rows and 3 columns.

Initialization of Two Dimensional Array

We use the following general syntax for declaring and initializing a two dimensional array with

specific number of rows and coloumns with initial values.

datatypearrayName [rows][colmns] = {{r1c1value, r1c2value, ...},{r2c1, r2c2,...}...} ;

Example

intmatrix_A [2][3] = { {1, 2, 3},{4, 5, 6} } ;

The above declaration of two dimensional array reserves 6 continuous memory locations of 2

bytes each in the form of 2 rows and 3 coloumns. And the first row is initialized with values 1, 2

& 3 and second row is initialized with values 4, 5 & 6.

We can also initialize as follows...

intmatrix_A [2][3] = {

{1, 2, 3},

{4, 5, 6}

7

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

} ;

Accessing Individual Elements of Two Dimensional Array

In c programming language, to access elements of a two dimensional array we use array name

followed by row index value and column index value of the element that to be accessed. Here the

row and column index values must be enclosed in separate square braces. In case of two

dimensional array the compiler assigns separate index values for rows and columns.

We use the following general syntax to access the individual elements of a two dimensional

array...

arrayName [rowIndex] [columnIndex]

Example

matrix_A [0][1] = 10 ;

In the above statement, the element with row index 0 and column index 1 of matrix_A array is

assinged with value 10.

Example Program for TWO Dimensional Array:

#include <stdio.h>

#include<conio.h>

int main()

{

int m, n, c, d, first[10][10], second[10][10], sum[10][10];

printf("Enter the number of rows and columns of matrix\n");

scanf("%d%d", &m, &n);

printf("Enter the elements of first matrix\n");

for (c = 0; c < m; c++)

for (d = 0; d < n; d++)

scanf("%d", &first[c][d]);

printf("Enter the elements of second matrix\n");

for (c = 0; c < m; c++)

for (d = 0 ; d < n; d++)

scanf("%d", &second[c][d]);

printf("Sum of entered matrices:-\n");

8

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

for (c = 0; c < m; c++) {

for (d = 0 ; d < n; d++) {

sum[c][d] = first[c][d] + second[c][d];

printf("%d\t", sum[c][d]);

 }

printf("\n");

 }

return 0;

}

Pointers in C

In c programming language, we use normal variables to store user data values. When we declare

a variable, the compiler allocates required memory with specified name.

In c programming language, every variable has name, datatype, value, storage class, and address.

We use a special type of variable called pointer to store the address of another variable with

same datatype.

Pointer is defined as follows...

Definition:

Pointer is a special type of variable used to store the memory location address of a variable.

In c programming language, we can create pointer variables of any datatype. Every pointer stores

the address of variable with same datatype only. That means, integer pointer is used store the

address of integer variable only.

Accessing the Address of Variables

In c programming language, we use the reference operator "&" to access the address of

variable.

 For example, to access the address of a variable "marks" we use "&marks". We use the

following printf statement to display memory location address of variable "marks"...

printf("Address : %u", &marks) ;

In the above example statement %u is used to display address of marks variable. Address of any

memory location is unsigned integer value.

Declaring Pointers (Creating Pointers)

9

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

In c programming language, declaration of pointer variable is similar to the creation of normal

variable but the name is prefixed with * symbol. We use the following syntax to declare a pointer

variable...

datatype *pointerName ;

A variable declaration prefixed with * symbol becomes a pointer variable.

Example

int *ptr ;

In the above example declaration, the variable "ptr" is a pointer variable that can be used to store

any integer variable address.

Assigning Address to Pointer

To assign address to a pointer variable we use assignment operator with the following syntax...

pointerVariableName = & variableName ;

For example, consider the following variables declaration...

int a, *ptr ;

In the above declaration, variable "a" is a normal integer variable and variable "ptr" is an integer

pointer variable. If we want to assign the address of variable "a" to pointer variable "ptr" we use

the following statement...

ptr = &a ;

In the above statement, the address of variable "a" is assigned to pointer variable "prt". Here we

say that pointer variable ptr is pointing to variable a.

Accessing Variable Value Using Pointer

Pointer variables are used to store the address of other variables. We can use this address to

access the value of the variable through its pointer. We use the symbol de-reference

operator"*" infront of pointer variable name to access the value of variable to which the pointer

is pointing.

We use the following general syntax...

*pointerVariableName

Example

#include<stdio.h>

10

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

#include<conio.h>

void main()

{

 int a = 10, *ptr ;

 clrscr();

 ptr = &a ;

 printf("Address of variable a = %u\n", ptr) ;

 printf("Value of variable a = %d\n", *ptr) ;

 printf("Address of variable ptr = %u\n", &ptr) ;

}

Output

Address of variable a = 65524

Value of variable a = 10

Address of variable ptr = 65526

In the above example program, variable a is a normal variable and variable ptr is a pointer

variable. Address of variable a is stored in pointer variable ptr. Here ptr is used to access the

address of variable a and *ptr is used to access the value of variable a.

Memory Allocation of Pointer Variables

Every pointer variable is used to store the address of another variable. In computer memory

address of any memory location is an unsigned integer value. In c programming language,

unsigned integer requires 2 bytes of memory. So, irrespective of pointer datatype every pointer

variable is allocated with 2 bytes of memory

11

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Pointers Arithmatic Operations in C

Pointer variables are used to store address of variables. Address of any variable is an unsigned

integer value i.e., it is a numerical value. So we can perform arithematic operations on pointer

values. But when we perform arithematic operations on pointer variable, result depends on the

amount of memory required by the variable to which the pointer is pointing.

In c programming language, we can perform the following arithematic operations on pointers...

1. Addition

2. Subtraction

3. Increment

4. Decrement

5. Comparison

Addition Operation on Pointer

In c programming language, the addition operation on pointer variables is calculated using the

following formula...

AddressAtPointer + (NumberToBeAdd * BytesOfMemoryRequiredByDatatype)

Example

#include<stdio.h>

#include<conio.h>

void main()

{

 int a, *intPtr ;

 float b, *floatPtr ;

 double c, *doublePtr ;

 clrscr() ;

 intPtr = &a ; // Asume address of a is 1000

 floatPtr = &b ; // Asume address of b is 2000

 doublePtr = &c ; // Asume address of c is 3000

 intPtr = intPtr + 3 ; // intPtr = 1000 + (3 * 2)

 floatPtr = floatPtr + 2 ; // floatPtr = 2000 + (2 * 4)

 doublePtr = doublePtr + 5 ; // doublePtr = 3000 + (5 * 6)

 printf("intPtr value : %u\n", intPtr) ;

 printf("floatPtr value : %u\n", floatPtr) ;

 printf("doublePtr value : %u", doublePtr) ;

12

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

 getch() ;

}

intPtr value : 1006

floatPtr value : 2008

doublePtr value : 3030

Subtraction Operation on Pointer

In c programming language, the subtraction operation on pointer variables is calculated using the

following formula...

AddressAtPointer - (NumberToBeAdd * BytesOfMemoryRequiredByDatatype)

Example

#include<stdio.h>

#include<conio.h>

void main()

{

 int a, *intPtr ;

 float b, *floatPtr ;

 double c, *doublePtr ;

 clrscr() ;

 intPtr = &a ; // Asume address of a is 1000

 floatPtr = &b ; // Asume address of b is 2000

 doublePtr = &c ; // Asume address of c is 3000

 intPtr = intPtr - 3 ; // intPtr = 1000 - (3 * 2)

 floatPtr = floatPtr - 2 ; // floatPtr = 2000 - (2 * 4)

 doublePtr = doublePtr - 5 ; // doublePtr = 3000 - (5 * 6)

 printf("intPtr value : %u\n", intPtr) ;

 printf("floatPtr value : %u\n", floatPtr) ;

 printf("doublePtr value : %u", doublePtr) ;

 getch() ;

}

intPtr value : 994

floatPtr value : 1992

doublePtr value : 2970

13

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Increment & Decrement Operation on Pointer

The increment operation on pointer variable is calculated as follows...

AddressAtPointer + NumberOfBytesRequiresByDatatype

Example

#include<stdio.h>

#include<conio.h>

void main()

{

 int a, *intPtr ;

 float b, *floatPtr ;

 double c, *doublePtr ;

 clrscr() ;

 intPtr = &a ; // Asume address of a is 1000

 floatPtr = &b ; // Asume address of b is 2000

 doublePtr = &c ; // Asume address of c is 3000

 intPtr++ ; // intPtr = 1000 + 2

 floatPtr++ ; // floatPtr = 2000 + 4

 doublePtr++ ; // doublePtr = 3000 + 6

 printf("intPtr value : %u\n", intPtr) ;

 printf("floatPtr value : %u\n", floatPtr) ;

 printf("doublePtr value : %u", doublePtr) ;

 getch() ;

}

intPtr value : 1002

floatPtr value : 2004

doublePtr value : 3006

The decrement operation on pointer variable is calculated as follows...

AddressAtPointer - NumberOfBytesRequiresByDatatype

Example

#include<stdio.h>

#include<conio.h>

14

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

void main()

{

 int a, *intPtr ;

 float b, *floatPtr ;

 double c, *doublePtr ;

 clrscr() ;

 intPtr = &a ; // Asume address of a is 1000

 floatPtr = &b ; // Asume address of b is 2000

 doublePtr = &c ; // Asume address of c is 3000

 intPtr-- ; // intPtr = 1000 - 2

 floatPtr-- ; // floatPtr = 2000 - 4

 doublePtr-- ; // doublePtr = 3000 - 6

 printf("intPtr value : %u\n", intPtr) ;

 printf("floatPtr value : %u\n", floatPtr) ;

 printf("doublePtr value : %u", doublePtr) ;

 getch() ;

}

intPtr value : 998

floatPtr value : 1996

doublePtr value : 2994

Comparison of Pointers

The comparison operation is perform between the pointers of same datatype only. In c

programming language, we can use all comparison operators (relational operators) with pointers.

We can't perform multiplication and division operations on pointers.

15

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Pointers to Pointers in C

In c programming language, we have pointers to store the address of variables of any datatype. A

pointer variable can store the address of normal variable.

Definition:

 C programming language also provides pointer variable to store the address of another pointer

variable. This type of pointer variable is called as pointer to pointer variable.

Sometimes we also call it as double pointer. We use the following syntax for creating pointer to

pointer…

Syntax:

datatype **pointerName ;

Example

int **ptr ;

Here, ptr is an integer pointer variable that stores the address of another integer pointer variable

but does not stores the normal integer variable address.

Points to be Remembered

1. To store the address of normal variable we use single pointer variable

2. To store the address of single pointer variable we use double pointer variable

3. To store the address of double pointer variable we use triple pointer variable

4. Similarly the same for remaining pointer variables also…

Example Program

#include<stdio.h>

#include<conio.h>

void main()

{

 int a ;

 int *ptr1 ;

 int **ptr2 ;

 int ***ptr3 ;

 clrscr() ;

 ptr1 = &x ;

16

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

 ptr2 = &ptr1 ;

 ptr3 = &ptr2 ;

 printf(“Address of ‘x’ = %u\n”, ptr1) ;

 printf(“Address of ‘ptr1’ = %u\n”, ptr2) ;

 printf(“Address of ‘ptr2’ = %u\n”, ptr3) ;

 getch() ;

}

Pointers to void in C

In c programming language, pointer to void is the concept of defining a pointer variable that is

independent of datatype.

 In C programming language, void pointer is a pointer variable used to store the address of

variable of any datatype.

 That means single void pointer can be used to store address of integer variable, float variable,

character variable, double variable or any structure variable.

We use the keyword "void" to create void pointer. We use the following syntax for creating

pointer to void…

void *pointerName ;

Example

void *ptr ;

Here, "ptr" is a void pointer variable which is used to store the address of any datatype variable.

Points to be Remembered

void pointer stores the address of any datatype variable.

Example Program

#include<stdio.h>
#include<conio.h>

void main()
{
 int a ;
 float b ;
 char c ;

17

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

 void *ptr ;

 clrscr() ;

 ptr = &a ;
 printf(“Address of integer variable ‘a’ = %u\n”, ptr) ;

 ptr = &b ;
 printf(“Address of float variable ‘b' = %u\n”, ptr) ;

 ptr = &c ;
 printf(“Address of character variable ‘c’ = %u\n”, ptr) ;

 getch() ;
}

Pointers to Arrays in C

In c programming language, when we declare an array the compiler allocates required amount of

memory and also creates constant pointer with array name and stores the base address of that

pointer in it.

The address of first element of an array is called as base address of that array.

The array name itself acts as pointer to the first element of that array.

 Consider the following example of array declaration...

int marks[6] ;

For the above declaration, the compiler allocates 12 bytes of memory and the address of first

memory location (i.e., marks[0]) is stored in a constant pointer called marks.

That means in the above example, marks is a pointer to marks[0].

Example Program

#include<stdio.h>
#include<conio.h>

void main()

18

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

{
 int marks[6] = {89, 45, 58, 72, 90, 93} ;
 int *ptr ;

 clrscr() ;
 ptr = marks ;
 printf(“Base Address of 'marks' array = %u\n”, ptr) ;
getch() ;
}

Points to be Remembered

 An array name is a constant pointer.

 We can use the array name to access the address and value of all the elements of that

array.

 Since array name is a constant pointer we can't modify its value.



Consider the following example statements...

ptr = marks + 2 ;

Here, the pointer variable "ptr" is assigned with address of "marks[2]" element.

printf("Address of 'marks[4]' = %u", marks+4) ;

The above printf statement displays the address of element "marks[4]".

printf("Value of 'marks[0]' = %d", *marks) ;

printf("Value of 'marks[3]' = %d", *(marks+3)) ;

In the above two statements, first printf statement prints the value 89 (i.e., value of marks[0]) and

the second printf statement prints the value 72 (i.e., value of marks[3]).

marks++ ;

The above statement generates compilation error because the array name acts as a constant

pointer. So we can't change its value.

In the above example program, the array name marks can be used as follows...

marks is same as &marks[0]

marks + 1 is same as &marks[1]

marks + 2 is same as &marks[2]

marks + 3 is same as &marks[3]

marks + 4 is same as &marks[4]

marks + 5 is same as &marks[5]

*marks is same as marks[0]

19

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

*(marks + 1) is same as marks[1]

*(marks + 2) is same as marks[2]

*(marks + 3) is same as marks[3]

*(marks + 4) is same as marks[4]

*(marks + 5) is same as marks[5]

Pointers to Multi Dimensional Array

In case of multi dimensional array also the array name acts as a constant pointer to the base

address of that array.

For example, we declare an array as follows...

int marks[3][3] ;

In the above example declaration, the array name marks acts as constant pointer to the base

address (address of marks[0][0]) of that array.

In the above example of two dimensional array, the element marks[1][2] is accessed as

((marks + 1) + 2).

Pointers For Functions in C

In c programming language, there are two ways to pass parameters to functions. They are as

follows...

1. Call by Value

2. Call By Reference

3.

We use pointer variables as formal parameters in call by reference parameter passing method.

In case of call by reference parameter passing method, the address of actual parameters is passed

as arguments from the calling function to the called function. To recieve this address, we use

pointer variables as formal parameters.

Consider the following program for swapping two variable values...

Example - Swapping of two variable values using Call by Reference

#include<stdio.h>

#include<conio.h>

void swap(int *, int *) ;

20

UNIT II

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

void main()

{

 int a = 10, b = 20 ;

 clrscr() ;

 printf(“Before swap : a = %d and b = %d\n", a, b) ;

 swap(&a, &b) ;

 printf(“After swap : a = %d and b = %d\n", a, b) ;

 getch() ;

}

void swap(int *x, int *y)

{

 int temp ;

 temp = *x ;

 *x = *y ;

 *y = temp ;

}

Output

Before swap : a = 10 and b = 20

After swap : a = 20 and b = 10

In the above example program, we are passing the addresses of variables a and b and these are

recieved by the pointer variables x and y. In the called function swap we use the pointer variables

x and y to swap the values of variables a and b.

