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Crystallography 
Introduction:      

 Solids can be broadly classified into two categories based on the arrangement of atoms or molecules  as 

crystalline and non crystalline (amorphous). 

1. Crystalline Solids: 

 In crystalline solids the atoms or molecules are arranged in a periodic manner in all three directions and 

further those are classified as mono (single) crystals and polycrystalline solids.  

 Crystals which have different periodic arrangements in all the three directions exhibit varying physical 

properties with directions and they are called anisotropic substances. 

              Ex:  Al, Cu, Ag, Ge, Si, Diamond etc… 

2. Non crystalline Solids:        

 Non crystalline substances are also called amorphous. In amorphous solids the atoms or molecules 

arranged randomly and which have no regular structure. 

 They have no directional properties and therefore they are called as isotropic substances. 

              Ex: Rubber, Glass, Wood, Plastic etc.. 
Deffinations: 

 Space lattice: A space lattice is defined as an infinite array of points in three dimensions in which 

every point has surroundings identical to that of every other point in the array.  

 Basis:  A group of atoms or molecules are attached to every lattice point in the space lattice called the 

Basis. 

 Lattice + basis = Crystal structure  

 Unit cell: The smallest geometric structure that repetition which  

gives an entire crystal structure called unit cell.                                          

 In the fig. a, b, c and α, β, γ are called lattice parameters.  

 Note: 1. Primitives (a, b, c) decide the size of the unit cell. 

3. Interfacial angles (α, β, γ) decide the shape of the unit cell. 

 

Crystal Systems and Bravais lattices: 

 Based on the lattice parameter values all the crystals are classified into 7 types. 

Sl.No Crystal system Primitives& Angles Bravias lattices 

1 Cubic a=b=c&α=β=γ =90˚ P, I, F 

2 Tetragonal a=b≠c&α=β=γ =90˚ P, I 

3 Orthorhombic a≠b≠c&α=β=γ =90˚ P, I, F, C 

4 Monoclinic a≠b≠c&α=β=90˚≠γ  P, C 

5 Triclinic   a≠b≠c&α≠β≠γ ≠90˚ P 

6 Trigonal a=b=c&α=β=γ ≠90˚ P 

7 Hexgonal a=b≠c&α=β=90˚,  γ=120˚                   P 

 



 

 i). Primitive Lattice(P), ii). Body Centered Lattice(I), iii). Face Centered Lattice(F) and 
            iv). Base Centered Lattice(C). 

                     

                                         

 

Lattice planes and Miller indices: 

Crystalplanes:  

  A crystal is made up of a large number of parallel equidistant planes passing through lattice points are 

called Lattice planes or crystal planes. 

 The perpendicular distance between adjacent planes is  

called inter planar spacing. 
Miller indices:  

 “The Miller Indices are the three smallest possible integers (h k l), which have the same ratio as the 

reciprocals of the intercepts of the crystal plane having on the three crystallographic axes”. 

 These indices are used to indicate the different sets of parallel planes in a crystal. 
Procedure for finding Miller indices: 



                                                                                                              
  

  Choose  system of three coordinate axes x,y & z i.e., crystallographic  axes 

 Determine the intercepts p, q & r of the required plane ‘ABC’ on these axes i.e., OA = p, OB = q & OC 

= r. 

 Take ratio of reciprocals of the Intercepts i.e., 1/p:1/q:1/r. 

 Convert these reciprocals into integers by multiplying each one of them with their L.C.M . 

 Enclose these integers in smaller parenthesis  i.e.,  Miller indices (h  k  l) of the crystal.  
Important features of miller indices: 

• When a plane is parallel to any axis, the intercept of the plane on that axis is infinity. Hence its miller index for 
that axis is zero. 

• When the intercept of a plane on any axis is negative a bar is put on the corresponding miller index. 
• All equally spaced parallel planes have the same index number (h k l). 
• If a plane passes through origin, it is defined in terms of a parallel plane having non-zero intercept. 
• If a normal is drawn to a plane (h k l), the direction of the normal is [h k l].  

Constructions of planes: 

        (100) plane: 

               

 

        (010) plane: 

                    

 

       (001) plane: 
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Inter planner spacing of orthogonal crystal system: 

 ‘The distance ‘d’ between a series of planes in a crystal is known as the ‘d’ spacing or inter planar 

spacing’. 

 Let ( h ,k, l ) be the miller indices of the plane ABC. 

 Let ON=d be a normal to the plane passing through the origin ‘0’. Let  this ON make angles α, β and γ 

with x, y and z axes respectively. 

 Imagine the reference plane passing through the origin “o” and the next plane cutting the intercepts a/h, 

b/k and c/l on x, y and z axes.  

 

 But law of direction cosines   
                                                                                           

 

 

 

 

 

 Therefore, the spacing between the adjacent planes dhkl = OM-ON  
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Let the direction cosines of ON be cosα, cosβ & cosγ  
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 Note: The inter planar spacing of Simple Cubic Structure  a=b=c 

       

Bragg’s law: 

 Bragg’s law states that, the path difference between the two reflected rays by the crystal planes should 

be an integral multiple of wavelength of incident x-rays for producing maxima or constructive 

interference.                                       

 When a monochromatic light of wavelength λ is incident on a surface  

of the film the light gets diffracted in all directions. The diffracted rays  

in some directions interfere constructively and form the fringes when  

the path difference is equal to n λ. 

 From the fig. d Sinθ  = CB & d Sinθ = BD   

 The path difference between these two rays is  CB + BD= 2 d Sinθ. 

 Bragg’s law 2 d Sinθ =  nλ. Where n = 1, 2, 3,…..first , second …order etc. 

 Powder  ( Debye – Scherer)  Method: 

 The Powder method is applicable to finely divided crystalline powder. It is used for accurate 

determination of lattice parameters in crystals. 

 The powdered specimen is kept inside the capillary tube. 

 A narrow pencil of monochromatic X-Ray is diffracted from the powder and recorded by the 

Photographic film as a series of lines of varying curvature. 

 The diffracted and reflected beams (cones) leave impressions  

on the photographic film in the form of arcs. 

 The full opening angle of the diffraction cone ‘4θ’ is determined  

by measuring the distance ‘S’ between two corresponding arcs. 

 4θ=S/r  then θ = S/4r. 
 

Applications of Powder Method 

 Study of d-spacing. 

 Study of mixtures. 

 Study of alloys. 

 Stress determination in metals.  

 Determination of particle size. 

 

 

 

 

Crystal Defects 
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 In an ideal crystal, the atomic arrangement is perfectly regular and continuous but real crystals never 

perfect. 

 Real crystals always contain a considerable density defects and imperfections that affect their physical, 

chemical, mechanical and electronic properties. 

 Crystalline imperfections can be classified on the basis of their geometry under four main divisions 

namely. 

 
Point Defects: 

 Point imperfections are also called zero dimensional imperfections.  

Vacancy: 

 A Vacancy refers to an atomic site from where the atom is missing. 
Compositional  defects: 

 Substitution impurity is a point imperfection and it refers to a foreign atom that substitutes or replaces a 

parent atom in the crystal. 

Electronic defects: Errors in charge distribution in solids are called electronic defects. 

Frenkel Defect:  

 An atom leaves the regular site and occupies interstitial position. Such defects are called     Frenkel 

defects. 

Schottky defect:  

 A pair of one cat-ion and one an-ion can be missing from an ionic crystal as shown in a figure. Such a 

pair of vacant ion sites is called Schottky defect. 

Calculation of number Schottky defects at a given temperature: 

 In ionic crystals, the number of Schottky defects at a given temperature, can be calculated assuming an 

equal number of positive and negative ion vacancies are present. 



 Let us consider ‘ Es’ is the energy required to move an ion Pair from lattice site inside the crystal to a 

lattice site on the surface. 

 Therefore the amount of energy required to produce ‘n’ number of isolated ion pair vacancies will be 

 The total number of ways that to move ‘n’ numbers of ion pairs out of ‘N’ number of ionic molecules 

in a crystal on to the surface will be  

 

 

 

 The free energy  
 

Using sterling approximation  
 

 

 

 

 At thermal equilibrium, free energy is constant and minimum with respect to ‘n’, hence 

 

 

 

Calculation of number of Frenkel Defects at given temperature:  

 In ionic crystal an ion may be displaced from the regular lattice into an interstitial site or void space. If 

it is so, then a vacancy and an interstitial defect will be formed. 
 Let us consider Ei  is the energy required to move an atom from lattice site inside the crystal to a lattice 

site on the surface. 

 The amount of energy required to produce ‘n’ number of isolated vacancies…  

 The total number of ways to move n numbers of ions out of N number ionic molecules in a crystal on to the 
surface will be,  
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 At equilibrium, the free energy is constant and minimum with respect to n, hence  
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