Unit-1

Crystallography

Introduction:

- Solids can be broadly classified into two categories based on the arrangement of atoms or molecules as crystalline and non crystalline (amorphous).

1. Crystalline Solids:

- In crystalline solids the atoms or molecules are arranged in a periodic manner in all three directions and further those are classified as mono (single) crystals and polycrystalline solids.
- Crystals which have different periodic arrangements in all the three directions exhibit varying physical properties with directions and they are called anisotropic substances.

Ex: Al, Cu, Ag, Ge, Si, Diamond etc...

2. Non crystalline Solids:

- Non crystalline substances are also called amorphous. In amorphous solids the atoms or molecules arranged randomly and which have no regular structure.
- They have no directional properties and therefore they are called as isotropic substances.

Ex: Rubber, Glass, Wood, Plastic etc..

Deffinations:

- Space lattice: A space lattice is defined as an infinite array of points in three dimensions in which every point has surroundings identical to that of every other point in the array.
- Basis: A group of atoms or molecules are attached to every lattice point in the space lattice called the Basis.
- Lattice + basis $=$ Crystal structure
- Unit cell: The smallest geometric structure that repetition which gives an entire crystal structure called unit cell.
- In the fig. $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ are called lattice parameters.
- Note: 1. Primitives ($\mathbf{a}, \mathbf{b}, \mathbf{c}$) decide the size of the unit cell.

3. Interfacial angles $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})$ decide the shape of the unit cell.

Crystal Systems and Bravais lattices:

- Based on the lattice parameter values all the crystals are classified into 7 types.

SI.No	Crystal system	Primitives\& Angles	Bravias lattices
1	Cubic	$\mathrm{a}=\mathrm{b}=\mathrm{c} \& \alpha=\beta=\gamma=90^{\circ}$	P, I, F
2	Tetragonal	$\mathrm{a}=\mathrm{b} \neq \mathrm{c} \& \alpha=\beta=\gamma=90^{\circ}$	P, I
3	Orthorhombic	$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c} \& \alpha=\beta=\gamma=90^{\circ}$	P, I, F, C
4	Monoclinic	$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c} \& \alpha=\beta=90^{\circ} \neq \gamma$	P, C
5	Triclinic	$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c} \& \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	P
6	Trigonal	$\mathrm{a}=\mathrm{b}=\mathrm{c} \& \alpha=\beta=\gamma \neq 90^{\circ}$	P
7	Hexgonal	$\mathrm{a}=\mathrm{b} \neq \mathrm{c} \& \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$	P

- i). Primitive Lattice(P), ii). Body Centered Lattice(I), iii). Face Centered Lattice(F) and iv). Base Centered Lattice(C).

Lattice planes and Miller indices:

Crystalplanes:

- A crystal is made up of a large number of parallel equidistant planes passing through lattice points are called Lattice planes or crystal planes.
- The perpendicular distance between adjacent planes is
 called inter planar spacing.

Miller indices:

- "The Miller Indices are the three smallest possible integers (h k l), which have the same ratio as the reciprocals of the intercepts of the crystal plane having on the three crystallographic axes".
- These indices are used to indicate the different sets of parallel planes in a crystal.

Procedure for finding Miller indices:

- Choose system of three coordinate axes $x, y \& z i . e .$, crystallographic axes
- Determine the intercepts $\mathrm{p}, \mathrm{q} \& \mathrm{r}$ of the required plane ' ABC ' on these axes i.e., $\mathrm{OA}=\mathrm{p}, \mathrm{OB}=\mathrm{q} \& \mathrm{OC}$ $=\mathrm{r}$.
- Take ratio of reciprocals of the Intercepts i.e., $1 / \mathrm{p}: 1 / \mathrm{q}: 1 / \mathrm{r}$.
- Convert these reciprocals into integers by multiplying each one of them with their L.C.M .
- Enclose these integers in smaller parenthesis i.e., Miller indices (h k l) of the crystal.

Important features of miller indices:

- When a plane is parallel to any axis, the intercept of the plane on that axis is infinity. Hence its miller index for that axis is zero.
- When the intercept of a plane on any axis is negative a bar is put on the corresponding miller index.
- All equally spaced parallel planes have the same index number (h k I).
- If a plane passes through origin, it is defined in terms of a parallel plane having non-zero intercept.
- If a normal is drawn to a plane (hkI), the direction of the normal is [hkl].

Constructions of planes:

(100) plane:

Intercepts of the Plane are $=(1, \infty, \infty)$
Reciprocal s of intercepts are $=\left(\frac{1}{1}, \frac{1}{\infty}, \frac{1}{\infty}\right)$
Miller indices : $(1,0,0)$

(010) plane:

Intercepts of the Plane are $=(\infty, 1, \infty)$
R`eciprocals of intercepts are $=\left(\frac{1}{\infty}, \frac{1}{1}, \frac{1}{\infty}\right)$
Miller indices : $(0,1,0)$

Intercepts of the Plane are $=(\infty, \infty, 1)$
R`eciprocals of intercepts are $=\left(\frac{1}{\infty}, \frac{1}{\infty}, \frac{1}{1}\right)$
Miller indices : $(0,0,1)$

Inter planner spacing of orthogonal crystal system:

- 'The distance ' d ' between a series of planes in a crystal is known as the ' d ' spacing or inter planar spacing'.
- Let $(\mathrm{h}, \mathrm{k}, \mathrm{l})$ be the miller indices of the plane ABC .
- Let $\mathrm{ON}=\mathrm{d}$ be a normal to the plane passing through the origin ' 0 '. Let this ON make angles α, β and γ with x, y and z axes respectively.
- Imagine the reference plane passing through the origin "o" and the next plane cutting the intercepts a / h, b / k and c / l on x, y and z axes.

Let the direction cosines of $O N$ be $\cos \alpha, \cos \beta \& \cos \gamma$

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
$$

- But law of direction cosines

$$
\begin{aligned}
& {\left[\frac{d}{a / h}\right]^{2}+\left[\frac{d}{a / k}\right]^{2}+\left[\frac{d}{a / l}\right]^{2}=1} \\
& d^{2}\left\{\frac{h^{2}}{a^{2}}+\frac{k^{2}}{a^{2}}+\frac{l^{2}}{a^{2}}\right\}=1 \\
& O N=d_{h k l}=\frac{1}{\left[\left(\frac{h}{a}\right)^{2}+\left(\frac{k}{b}\right)^{2}+\left(\frac{l}{c}\right)^{2}\right]^{\frac{1}{2}}}---(1)
\end{aligned}
$$

- Therefore, the spacing between the adjacent planes $\mathrm{d}_{\mathrm{hkl}}=\mathrm{OM}-\mathrm{ON}$

$$
d_{h k l}=\frac{1}{\left[\left(\frac{h}{a}\right)^{2}+\left(\frac{k}{b}\right)^{2}+\left(\frac{l}{c}\right)^{2}\right]^{\frac{1}{2}}}
$$

Note: The inter planar spacing of Simple Cubic Structure $a=b=c$

$$
d=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}}
$$

Bragg's law:

- Bragg's law states that, the path difference between the two reflected rays by the crystal planes should be an integral multiple of wavelength of incident x-rays for producing maxima or constructive interference.
- When a monochromatic light of wavelength λ is incident on a surface of the film the light gets diffracted in all directions. The diffracted rays in some directions interfere constructively and form the fringes when the path difference is equal to $\mathbf{n} \lambda$.
- From the fig. $\mathbf{d} \operatorname{Sin} \boldsymbol{\theta}=\mathbf{C B} \& \mathbf{d} \operatorname{Sin} \boldsymbol{\theta}=\mathbf{B D}$
- The path difference between these two rays is $\mathbf{C B}+\mathbf{B D}=\mathbf{2 d} \mathbf{~} \boldsymbol{\operatorname { S i n }} \boldsymbol{\theta}$.
- Bragg's law $2 \mathbf{d} \operatorname{Sin} \boldsymbol{\theta}=\mathbf{n} \boldsymbol{\lambda}$. Where $n=1,2,3, \ldots$. first , second \ldots order etc.

Powder (Debye - Scherer) Method:

- The Powder method is applicable to finely divided crystalline powder. It is used for accurate determination of lattice parameters in crystals.
- The powdered specimen is kept inside the capillary tube.
- A narrow pencil of monochromatic X-Ray is diffracted from the powder and recorded by the Photographic film as a series of lines of varying curvature.
- The diffracted and reflected beams (cones) leave impressions on the photographic film in the form of arcs.
- The full opening angle of the diffraction cone ' 4θ ' is determined by measuring the distance ' S ' between two corresponding arcs. $4 \theta=S / r$ then $\theta=S / 4 r$.

Applications of Powder Method

- Study of d-spacing.
- Study of mixtures.
- Study of alloys.
- Stress determination in metals.
- Determination of particle size.
- In an ideal crystal, the atomic arrangement is perfectly regular and continuous but real crystals never perfect.
- Real crystals always contain a considerable density defects and imperfections that affect their physical, chemical, mechanical and electronic properties.
- Crystalline imperfections can be classified on the basis of their geometry under four main divisions namely.

Point Defects:

- Point imperfections are also called zero dimensional imperfections.

Vacancy:

- A Vacancy refers to an atomic site from where the atom is missing.

Compositional defects:

- Substitution impurity is a point imperfection and it refers to a foreign atom that substitutes or replaces a parent atom in the crystal.
Electronic defects: Errors in charge distribution in solids are called electronic defects.

Frenkel Defect:

- An atom leaves the regular site and occupies interstitial position. Such defects are called Frenkel defects.

Schottky defect:

- A pair of one cat-ion and one an-ion can be missing from an ionic crystal as shown in a figure. Such a pair of vacant ion sites is called Schottky defect.

Calculation of number Schottky defects at a given temperature:

- In ionic crystals, the number of Schottky defects at a given temperature, can be calculated assuming an equal number of positive and negative ion vacancies are present.
- Let us consider ' E_{s} ' is the energy required to move an ion Pair from lattice site inside the crystal to a lattice site on the surface.
- Therefore the amount of energy required to produce ' n ' number of isolated ion pair vacancies will be
- The ©ttalmermber of ways that to move ' n ' numbers of ion pairs out of ' N ' number of ionic molecules in a crystal on to the surface will be

$$
\begin{aligned}
& P=\left[\frac{N!}{(N-n)!n!}\right]^{2} \\
& S=K_{B} \log P \Rightarrow S=K_{B} \log \left[\frac{N!}{(N-n)!n!}\right]^{2} \Rightarrow S=2 K_{B} \log \left[\frac{N!}{(N-n)!n!}\right]
\end{aligned}
$$

- The free energy

$$
\mathrm{F}=\mathrm{U}-\mathrm{TS}
$$

$$
\mathrm{F}=\mathrm{nE}_{\mathrm{p}}-2 \mathrm{~K}_{\mathrm{B}} \operatorname{Tlog}\left[\frac{\mathrm{~N}!}{(\mathrm{N}-\mathrm{n})!\mathrm{n!}}\right]
$$

Using sterling approximation $\quad \log x!=x \log x-x$

$$
\begin{aligned}
& \log \left[\frac{N!}{(N-n)!n!}\right]=[N \log N-N-(N-n) \log (N-n)+(N-n)-n \operatorname{logn}+n] \\
& \log \left[\frac{N!}{(N-n)!n!}\right]=[N \log N-(N-n) \log (N-n)-n \operatorname{logn}] \\
& F=n E_{p}-2 K_{B} T[N \log N-(N-n) \log (N-n)-n \operatorname{logn}]
\end{aligned}
$$

- At thermal equilibrium, free energy is constant and minimum with respect to ' n ', hence

$$
\begin{aligned}
& {\left[\frac{d F}{d n}\right]_{T}=0} \\
& E_{p}=2 K_{B} \operatorname{Tlog}\left[\frac{N-n}{n}\right] \Rightarrow \frac{E_{p}}{2 K_{B} T}=\log \left[\frac{N-n}{n}\right] \Rightarrow n=(N-n) \exp \left\{\frac{-E_{p}}{2 K_{B} T}\right\} \\
& \text { if } n \lll N \Rightarrow n \cong \operatorname{Nexp}\left\{\frac{-E_{p}}{2 K_{B} T}\right\}
\end{aligned}
$$

Calculation of number of Frenkel Defects at given temperature:

- In ionic crystal an ion may be displaced from the regular lattice into an interstitial site or void space. If it is so, then a vacancy and an interstitial defect will be formed.
- Let us consider E_{i} is the energy required to move an atom from lattice site inside the crystal to a lattice site on the surface.
- The amount of energy required to produce ' n ' number of isolated vacancies... $U=n E_{i}$
- The total number of ways to move n numbers of ions out of N number ionic molecules in a crystal on to the surface will be,

$$
\begin{aligned}
& p=\left[\frac{N!}{(N-n)!n!}\right]\left[\frac{N_{i}!}{\left(N_{i}-n\right)!n!}\right] \\
& \text { entropy }=K_{B} \log p \\
& S=K_{B} \log \left\{\left[\frac{N!}{(N-n)!n!}\right]\left[\frac{N_{i}!}{\left(N_{i}-n\right)!n!}\right]\right\} \\
& \text { freeenergy }=U-T S \\
& F=n E_{i}-K_{B} \operatorname{Tlog}\left\{\left[\frac{N!}{(N-n)!n!}\right]\left[\frac{N_{i}!}{\left(N_{i}-n\right)!n!}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \log \left\{\left[\frac{N!}{(N-n)!n!}\right]\left[\frac{N_{i}!}{\left(N_{i}-n\right)!n!}\right]\right\} \\
& =N \log N+N_{i} \log N_{i}-(N-n) \log (N-n)-\left(N_{i}-n\right) \log \left(N_{i}-n\right)-2 n \log n \\
& F=n E_{i}-K_{B} T\left\{N \log N+N_{i} \log N_{i}-(N-n) \log (N-n)-\left(N_{i}-n\right) \log \left(N_{i}-n\right)-2 n \log n\right\}
\end{aligned}
$$

- At equilibrium, the free energy is constant and minimum with respect to n, hence

$$
\begin{aligned}
& {\left[\frac{d F}{d n}\right]_{T}=0} \\
& E_{i}=K_{B} T \log \left\{\frac{(N-n)\left(N_{i}-n\right)}{n^{2}}\right\} \\
& N \gg n, N_{i} \gg n \Rightarrow n \cong K_{B} T \log \left\{\frac{N N_{i}}{n^{2}}\right\} \\
& \log \left\{\frac{N N_{i}}{n^{2}}\right\}=\frac{E_{i}}{K_{B} T} \\
& \frac{N N_{i}}{n^{2}}=\exp \left\{\frac{E_{i}}{K_{B} T}\right\} \Rightarrow \frac{n^{2}}{N N_{i}}=\exp \left\{-\frac{E_{i}}{K_{B} T}\right\} \Rightarrow n^{2}=N N_{i} \exp \left\{-\frac{E_{i}}{K_{B} T}\right\} \\
& \therefore n \cong\left(N N_{i}\right)^{\frac{1}{2}} \exp \frac{-E_{i}}{2 K_{B} T}
\end{aligned}
$$

