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UNIT-3  WAVE MECHANICS  
 

1. Derive De-Broglie’s equation 
 

According to De-Brogle every moving particle is associated with wave. The dual Nature of light 
possessing both wave and particle properties was explained by combining Planck’s expression 

 

for the energy of photon E  h with Einstein’s mass energy relation E  mc2  to give 
 

     
mc2   h Or   

mc2
    

 

     
h 

  
 

               
 

      c  mc2
  (  c )   

 

        h     
 

 h =  h  , where  is the wavelength of photon 
 

  

p 
  

 mc              
 

If particle moves with velocity ‘v’ then   
h  

 

mv 
 

               
 

 

From above equation if particle velocity is less, then wavelength of wave is more .It was by analogy 

with this equation associating momentum with a photon that de Broglie expressed the concept of 

matter wave, according to which a material particle of mass ‘m’ moving with a velocity 
 
‘v’ should have an associated wavelength ‘  ’ , called the de-Broglie wavelength . 
 

2. Write difference forms of De-Broglie’s Wavelength 

 

(1) De-Broglie’s wave equation is given by   mv
h

 ---- (1) 
 
 
  

1 
       

 mv ---- (2) 

 

If kinetic Energy of particle is E  mv2  or    2Em 
 

2  

          
 

substitute Eq (2) in Eq (1)          
 

           
 

 

 

  h   

(Where E is kinetic Energy) 

 

 

    

 

 

   

 

 

  2Em 
 

             
 

(2) The wavelength associated with a moving particle is independent of any charge associate with it. If 

the velocity ‘v’ is given to an electron by accelerating it through a potential difference ‘V’ then the 

work done on the electron is Ve. This work done is converted into the kinetic energy of the 

electron, then 
 

      1 
 

 

1 
   

 2eV  
 

 

  2  2 
 

eV   mv  Or v      

    

 2     m   
 

 

2meV  mv  
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Substituting this value in the De Broglie equation we have    

 h  
 

   
 

 

   

2meV  
  

 

Charge of electron is 1.610-19 C/s and Mass of electron is 9.1 10-31 Kg substitute in above equations  

  

12.27
 A0

V

3. What are the properties of de Broglie’s waves or Matter Waves? 

 
(1) Lighter is the particle, greater is the wavelength associated with it. 

 
(2) Smaller is the velocity of the particle greater is the wavelength associated with it. 

 

(3) When v = 0 then   i.e., wave becomes indeterminate and if v =  then  = 0 This shows 

that matter waves are generated by the motion of particles. These waves are produced 

whether the particles are charged particles or they are uncharged. This fact reveals that these 

waves are not electromagnetic waves but they are a new kind of waves 

 
(4) The velocity of matter waves depends on the velocity of material particle i.e. it is not a constant 

while the velocity of electromagnetic wave is constant. 

 
(5) The wave nature of matter introduces an uncertainty in the location of the position of the 

particle because a wave cannot be said exactly at this point or exactly at that point. However, 

where the wave is large there is good chance of finding the particle while, where the wave is 

small there is very small chance of finding the particle. 
 
 

4. Derive Schrödinger time independent equation 

 

Let us consider a group of waves associated with a moving particle. Let  represent the 

displacement of these waves at any time‘t’. Let us consider that the wave motion be represent 

by classical wave equation. 

 2  

1
  

2
 


 ----- (1)

v 2   t 2  
 

Where v is the velocity. The solution of the above equation is given by 

 

  o e
it

 -------- (2)
 

Differentiate above equation with respect to ‘t’ 
 

  
 o (i)eit  And 

 2 
 o (i)2 eit  2 

 

 
t 

 
t 2 

 

      
 

     1  
 

Substitute above value in equation (1) then 2  

 

( 2 ) 

 

v 2 
 



 

            3 
 

   2    2 (2)2
  4 2 

 

 

2  

 

  0 But 

 

 

 

 

  
 

 v2
 v 2 ()2

 2
 

 

The wave equation is given by  2  

4 2 

  0 

    
 

      
 

2      
 

We can substitute the wavelength of the wave accompanying the particle in terms of the 
 

particle like property i.e.   
h Then 

         
 

mv 
         

 

             
  

2  

4
 

2m2v2
  0 

 

h2
 

 

If E and V are the total energy and the potential energy of the particle, respectively, then  

1
2 mv2   E V or mv  2m(E V ) 

 

 

The wave equation is given by 2  

8 2m 

(E V )  0 or 2  

2m 

(E V )  0 
 

h2
 

2
 

 

 

This equation is known as Schrödinger time independent wave equation.  
 

5. Derive Schrödinger time dependent equation 
 

Let us consider a group of waves associated with a moving particle. Let  represent the 

displacement of these waves at any time‘t’. Let us consider that the wave motion be represent 

by classical wave equation. 
 

2 
1

2

----- (1) 

 

v 2 t2 
 

Where ‘v’ is the velocity. The solution of the above equation is given by 

 

  oeit -------- (2)      
 

Differentiate above equation with respect to‘t’  then 
 

 o (i)eit
 

 
 

t  
 

             
 

But  = 2 substitute in above equation 
  

 o (i2)eit  2i 
E 
 ( E h )  

  

h 

 

     t     
 

Or     iE       
 

 

t 
      

 

           
 

Multiplying both side with ‘i’ i 




 E 
 

t 
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Substituting this value in time independent wave equation i.e. 2
2m

2(EV)0 
 
 

2 
2m

(i


V)0 
 

2
 t 

 
2
        2

 
 

 

2  i 
 

V  0 Or i 
 

 

 

2 V 
 

2m t t 2m 
 

 
 

 

Above equation is called as Schrödinger time dependent wave equation. The above equation 
 

can be written as 

 

where i 
 

 E and H  

2
 
2  V 

 
 

E  H as a 
 

t 
 

2m 
 

Hamiltonian Operator. 
     

 

       
 

 

6. Explain Physical significance of wave function ( ) 
 

The wave function associated with a physical system contains all relevant information about 

the system and its future behavior and thus describes it completely. It is natural to assume that the 

wave function be large where the particle is most likely to be and small elsewhere. 
 
 

If  is the amplitude of matter waves at any point in space, then the particle density at that point 
 

may be taken as proportional to  2 . Thus  is a measure of particle density. When this is 
 

multiplied by the charge of the particle, the charge density is obtained. In this way,  is a 
 

measure of charge density. 
 

According to Max Born  * =  2 gives the probability of finding the particle in the state.  is 

a measure of probability density 

 

The function  (r, t) is sometimes called probability amplitude of the particle at position r at 

time t. The total probability of finding the particle in the region is of course, unity, i.e. the 

particle is certainly to be found somewhere in space  2 dV  1 

 

Limitation of  

 

1.  must be finite for all values of x,y,z of the region 
 

2.  must be single valued i.e. for each set of values of x,y,z i.e.  must be have one value 

only 

3.  must be continuous in all region except where potential energy is infinite 
 

4.  is analytical i.e. it possesses continuous first order derivative 
 

5.  Vanishes at the boundaries. 
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7. Apply Schrodinger time independent wave equation to particle 
in Potential Box 

 

Let us consider a square potential well with infinitely high sides, as 

indicated below fig… If particle in potential well the potential energy is 

zero. If particle is moving then potential energy increases. 
 
 

According to Schrödinger time independent wave equation is given by 

 2  
2m

2 (E V )  0

  
Potential energy is zero if particle ‘x’ lies in between 0 to a i.e. V(x) =0 for 0 < x < a 

 

Boundary condition for wave function is given by        
 

  0 If particle at a i.e. ( )xa  0  And    0 at 0 i.e. ( )x0   0 
 

If potential energy is equal to zero then S. E equation becomes 2  

2m 

(E)  0 

 

  
 

2
 

 

2 2  2  2mE  
 

    
 

Or     0 ------ (1)  ( 

     

) 

 

   
2
 

 

The solution of above differential equation is   Asinx  B cosx ------- (1) 
  

 

Applying the boundary conditions 

 

  0 at x  a and   0 at x  0
 

i.e Asin a  BCosa  0 (2) 
 

BCosa  0 (3) 

 

If we substitute equation 3 in equation 2 then we have ASina  0 

 

This means wither A=0 or sina  0 
 

sina  0 or a  ,2, n 

 

Where n=0,1, 2, 3----- and   
n

a


 
 
 

If we substitute above condition in equation, we have 

 

  Asin 
n

a
x

 - - - - - - - (4)
  

And  2   
2mE 

or E  
2   2

 
or En   

n2 h2
 

 

  

2m 8ma2
 

 

  
 

 
2
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The integer ‘n’ introduce above is called a quantum number. The E values are called energy levels. 

The particle that is described by the wave function with a certain n values is said to be in quantum 

state ‘n’. For n=1 the state is called ground state. For 2, 3, ---etc. are known as excited states. 
 

The general form of wavefunciton may be written as 

 

 
 
 Asin 

nx 
( n  1,2,3,- - --)  

n 
a 

 

   
 

    
 

 

For A and B values we should normalize above function, normalize condition is 
 

a 2 dV1 
  
0 

 

a  A
2 Sin 2 nx dx 1   

 

     
 

0         a           
 

                      

a  A2 (1  cos 2nx )dx 1  

2 
     

 

0         a       
 

                      

  A  2   a     2nx   
 

[    ]  x      sin     

 1  

 

2 

  

2n 

   

a 

 

               
 

           
 

A2    2  A   2      
 

    

a 
  

 

       a          
   

Hence the normalized wavefucntions will have the 

form  n   a
2 sin na

x
 

 
 

The energy level and wave function as shown in the fig.... The Probability of finding the particles 
 

more at maximum amplitude. 
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University Questions 

 

1. Discuss the properties of wave function? 
 

2. What is the de-Broglie’s hypothesis? Obtain the De-broglie’s wavelength of matter wave 

 
3. Apply Schrödinger’s Wave equation to a particle in Infinite Square well potential and obtain 

wave function and energy values? 

 
4. Write the properties of matter waves and show that matter waves can travel with speed 

greater than speed of light in vacuum. 

 
5. Obtain Schrödinger’s time independent wave equation? 

 

6. Find the K.E and velocity of Photon associated with de-Broglies of wavelength of 0.2865A0  

h  6.6 1034 Js, mp   1.67 1027 Kg 

 

7. Calculate the wavelength associated with a neutron energy 0.025eV (mn=1.67X10-27Kg) 

 
8. Compute the de-Broglie wavelength of a proton whose kinetic energy is equal to the rest 

energy of an electron (m= 9.1 x 10-31kg, mp=1.67 x 10-27 kg) 
 

9. Calculate the energy of an electron wavelength of 3x10-2 m. Given h = 6.62x10-34 Js 

 
10. Compute the De-Broglie wavelength of a proton whose kinetic energy is equal to the rest 

energy of an electron (me = 9.1 X10-31Kg, mp=1.67 X 10-27Kg) (May06,Dec2004) (2M) 

 
11. Find the first excited state energy of an electron moving along X-axis confined in a box of side 

length 10-10m (july02) (2M) 

 
12. Calculate the De-Broglie wavelength of an electron which is accelerated by a potential of 100V 

h  6.61034 Js, m  9.11031 Kg 
 

13. Find the energy and momentum of the neutron whose De-Broglie wavelength is l.5Ao 

 
14. Calculate the de Broglie’s wavelength of an electron subjected to a potential difference of 12.5 

KV. 

 

15. Calculate the energy of an electron wave of wavelength 3x10-2m 

 

16. The electron is confined to a box of length 10-8 m. Calculate the minimum uncertainty in its 
velocity. 

 
17. Determine the de-Broglie wavelength of an electron, having kinetic energy of 1eV 

 
18. Compute the energy difference between the first and second quantum state for an electron in 

one dimension’s material having cube side1m.  



 

UNIT-III Maxwell’s Equations and Electromagnetic waves 
 
 
 
 

1. Write the basic equations of Electricity and Magnetism 

 

1. E.dS  
q 

.....(1) 
 


0  

   
  

This is Gauss’s law of electrostatics which states that the electric flux through a closed 

surface is equal to the net charge enclosed by the surface divided by the permittivity 

constant 0  

2. B.dS  0 ......(2) 
 
 

This is Gauss’s law of magnetism. 

surface is zero.  

3. E.dI  
d

B 
dt  

 
 

This states that the magnetic flux through a closed 
 

 

.....(3)  
 

This is Faraday’s law of Electromagnetic induction. 

 

This law states that an electric field is produced by changing magnetic field. 

 

4. B.dI  0i ......(4) 
 
 

This is Ampere’s law for magnetic field due to steady current. This law states that the 

amount of work done in carrying a unit magnetic pole one around a closed arbitrary path 

linked with the current is 0 times the current i . 

 

2. Derive the expression Displacement Current. 

 

According to Basic equation (4) i.e. Ampere’s law  B.dl  0i 
 

Maxwell’s suggested that above equation ‘i’ is not 

total current. He suggested that something must be 

added in ‘i’ of above equations. In order to know this 

something Maxwell’s postulated that similar to the 

electric field due to changing magnetic field, there 

would be a magnetic field due to changing electric 

field. Thus a changing electric field is equivalent to a  
current which flows as long as the electric field is changing and produces the same 
magnetic effect as an ordinary conduction current. This is known as displacement current. 

 

And Ampere’s law is valid only for steady state phenomena and not for changing 
fields Let us consider Parallel capacitor for changing field. 

 

Electric field is given by 

E  
Q

 ( Q is th charge and A is the Area between the plates) 
 

o A 

For changing electric fields differentiating above equation 
 

 

1 



 

E 
 

  1  Q 
 

1 
i   

 

           

t 
 

o A t o A Q 

 i ) 

 

    

( 

 

    

E 
 

   
 

i   
 A 

   t 
 

o 
 

t 
     

 

          
 

Displacement Current is given by 
i

d  


 


o 
A

 
E

 

t 

 

Now Modified ampere’s law is given by  B.dl  0 (i  id ) 
 

 

3. Derive Maxwell differential equations 

 

Derivations  

1. E.dS  

q 

(Gauss’ law for electricity) ----- (1) 

 

0  

       
 

If    be  the charge density  and dV be  the  small  volume  then  charge  density 
 

    ch arg e  q  
 

   Volume dV 
  

 

q   dV 

For total charge 

q  
V  dV Substitute ‘q’ value in eq.1 

 

  E.dS  

1  
V

dV
 

    
 

 0 
     

 

                    
 

                      
 

or  0 E.dS  V  dV        
 

i.e.,   D.dS  V  dV       (  0 E  D) 
 

According to Gauss divergence theorem  
 

                   
 

    A.dS  V (.A) dV  
 

                    
 

Hence    D.dS  V (.D) dV  
 

                

V
dV

 

 

so,    V (.D) dV  
 

 

                    
 

     .D          
 

              
 

      
 

or 
       

.E  
      

 

       

0 
      

 

                     
 

or 
       

div.E  
  

.....(a)  

       

0 
 

                 
 

or 
 E x  

E y   
 E 

z  
    

 

              
 

           

0 

 
 

  x y     z    
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(2) B.dS  0  (Gauss’ law for electricity) 
 

Transforming the surface integral into volume integral, we get 

SB.dS  V.B dV 
 

V.B dV  0 
 

As the volume is arbitrary, the integral must be zero 
  

  

t 
 

As the equation is true is for all surfaces, we have 
B  

 E  t 
 

or curl E  
B 

......(c)  

t 
 

   
 

(4)B.dI0I (Ampere’s law) where I= i  id 
  

Let us consider Current density j  
Current

Area  
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 

   

 0 

           

.....(b) 

  
 

 .B              
 

 

     

By 
   

B .....(b) 
  

 

.BB 0       
 

or   x          z   0.  

  
 

Bx 
      

z 
  

 

or 
Byy B         

 

  x        z   0.       
 

(3) 
x y    z  

  
 

B.dS 
  

 

  E.dI  
d

B     
 

    
d

B dt      t  S   
 

(3)  E.dI   dt    t SB.dS   
 

        BdS       
 

Magnetic Flux density isBgiven by       
 

      S dS       

Flux  

  
 

      St
t

  

B  

   
 

               Area(dS )   
 

              Flux  B  Area(dS ) 
 

   Total flux(B )   B.dS   
 

              S       
 

Substitute B in above equation then  
E.dl

  dB 
dS  

 
 

                   S dt 
 

                      

Applying Stoke’s theorem            
 

                     
 

 
 E.dI  S ( E).dS      

 

S ( E).dS S 
B

 .dS   
 

                      
 



Totla Current I  J.dS 
 

S  
Substitute above value in Ampere’s Law 

 

 B.dI  0  J.dS
 

S  
Applying Stoke’s theorem 

 B.dI  s( B).dS
 

   
 


0 S 

          
 

  s( B).dS j.dS     
 

                
 

or   B  0 j           
 

.     

i  id 

   

i  o A 

E   

E 

 

  

Total Current 

        
 

But j  
 
 

 
 

t  
 j  o 

 

A 
 A 

   A 
  

t 
 

            
 

   B   (j   
E

 )     
 

                
 

            

             
  

 

4. Write a short note on uniform plane wave (Transverse nature) 

 

A uniform plane wave is a particular case of wave equation for which the electric field is 
independent of y and z and is a function of x and t only. Such a wave is called uniform 
plane wave.  

Consider the case of electromagnetic wave in which the components of vectors E and 

B vary with one coordinate only (say x ) and also with time t , i.e. 
 
 
 

 

But 

 

 
 

 

Further 

 

 

 
 

E  E(x, t)  and  B  B(x, t)  
EEE 

.E  0  orx     y     z x    
x    x  

 Ex  0 or E 
x 
 constant  

 

    
 

 

x 
         

 

            
 

   B 
x  By  B 

z  

.B  0 or        
 

    

x x 

 
 

     x     
 

 Bx  0 or B 
x 
  constant  

 

    
 

 

x 
         

 

            
 

 
 
 
 

 

 0







 0

 
 
 
 
 
 
 

 

.....(1) 
 
 
 
 

 

.....(2) 

 

Equations. (1) and (2) are obtained on the fact that the derivative of E and B with 
respect Y and Z are zero. 

 
 
 
 
 
 
 
 
 

 

4 



 

Futher  

 

i 
 

 

x

E x

 

Now 
 
 
 
 
 

 

From eq.(3) 

 
 

    
curl E  

 B       
 

     

t 
     

 

                     
 

j 
      

k 

       

 iB x   jB y   kBz  

 

             
 

y   z  
 

 

 
t  

E y 
    

E z 
          

 

                 
 

 E 
z  

E y  
i 

B 
x  0 

 

i 
      

 
 

 

     

z 

 

t 
 

 

 y               
 

 E z    
 E y 

 0 
     

 

                
 

  

y 
    

z 
     

 

                   
 

  Bx    
 0 

 
or B 

 
 constant  

   

t 
    x  

                      
 

                       
  

 
 
 
 
 
 
 
 
 
 
 

 

.....(3) 
 
 
 
 
 

 

.....(4) 

 
 

Similarly, taking curt B, we can show that E = constant.  
 

Hence, we conclude that E and B are constants as regards to time and space. So these 
components are static components and hence no part of wave motion. Thus, 

E  jE y  kEz 
 

B  jBy  kBz 
 

As vectors E and B do not contain any x-component, and hence I-direction being the 
direction of propagation of the wave. Further both these vectors are perpendicular to the 
direction of propagation. Hence, Maxwe1l electromagnetic waves are purely transverse  
in nature. 

 
 

 

5. State and Derive Poynting vector 

 

One important characteristic of electromagnetic waves is that they transport energy from one 
point to another point. The amount of field energy passing through unit area of the surface 
perpendicular to the direction of propagation of energy is called as Poynting vector. This 
is denoted by P.For example in a plane electromagnetic wave; E and B are perpendicular to 
each other and also to the direction of wave propagation. They involve stored energy. So P 

has a magnitude EB sin 90
0
= EB and points in the direction of wave propagation. The units 

of P will be Joule/rn
2
 x sec or Watt/rn

2
. 

P  1 (E  B)or   (E  H )  

 
 

 0 
 

Derivation of Expression. 
 

In order to derive the expression for Poynting vector, consider 

form of a rectangular parallelepiped of sides dr , dy and dz 

 
 

an elementary volume in the 

as shown in. The volume of 
 

parallelepiped is dx  dy dz . Suppose the electromagnetic energy 
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is propagated along the X-axis. Now the area perpendicular to the direction of propagation of 

energy is dy dz . Let the electromagnetic energy in this volume is U . Then the rate of change  
of energy is 

 


U

t SP.dS
  

Negative sign is used to show that energy is entering in the volume. So 
U 

P.dS   

S t 

We know that:  
 

(1) The energy density per unit volume in electric field E is given by  

uE   
1

2 0 E 2 
 

(2) The energy density per unit volume in magnetic field is given by 

 u   
1  H 2     

 

 

B 
       

 

    2 
 0      

 

            
 

But B= 0 H  and H = B 
 

  
 

              0  
               

 
u 

 
 

   1  B2
 
    

 

 B  

2o 

    
 

          
 

           
 

Total energy    U  uE  uB    
 

     1     1   
 

 U       E 2    B 2   
    

 

     
2 

 0   

2o 
  

 

           
  

The rate of decrease of energy in volume dV  is given by   
 

       1             1            
 

           
0 

E 2         
 B 2 dV   

 

                
 

       

2 

         

2o 

        
 

    t                     
 

Rate of decrease of energy for volume V                 
 

 U     

V 

 1            1       
 

              E 2         B 2 dV   
 

                   
 

 

t 
 

t 
  

2 

   0        

2o 

      
 

                       
 

      

V 

 1        E   1    B  
 

              2.E            2.B  dV  
                      

 

   

t 
  

2 

   0     

t 
  

2 0 

  
 

                 t  
 

  
V 

       E       B   B    
 

  



 0 E 

   

  
       

 
   

dV 
  

 

      

0 

      
 

             t       t    
 

 
 

 

.....(1) 
 
 
 

.....(2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

.....(3) 
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From Maxwell’s equations 
 B   (j   

E
 ) 

  

0 
o  t 

(Waves are propagating in non-conducting medium) 

 00
E


t 

        
 

 
   E 

 
 B 

.....(4)     

t 00 
 

      
 

  
B  

   
 

Further  E  
  

------(5) 
 

t 
  

 

     
 

Substituting the values from esq. (4) and (5) in eq. (3), we get 
 




U

t 

 
 

Eq.(6) can be written as 

  
   

  
    

 
   

 
 


V 

   B   B  
 

 
           

       

0 
E
  0 

  
 


0 
B
 0 0 dV 

 

    

 
  

   
 

 

          
 

 
U  V  E.( B)  B.( H )dV 

 

              
 

               

 t    
 

       
 

            
 

    V .(E  H )dV    
  

             
 

         .( A  B)  B.( 
  

 
 

.....(6) 
 
 
 
 
 

 

   

A)  A.( B) 

 

Using Gauss theorem of divergence, the volume integral can be expressed in terms of 
surface integral. Thus,  

 V (E  H ).ndS .....(7)  
Where n is the unit vector normal to the surface. Comparing eq. (3) with eq. (2), we get 

 

S P.dS  S (E  H ).dS 
 

Or P  (E  H ) .....(8) 

In magnitude P  EH  

 

This vector shows that energy flow takes place in a direction perpendicular to the plane 
containing E and H or B. Hence, E and H arc the instantaneous values. 

 

6. Derive the relation between D, E and P  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

7 



 

 

Let us consider a parallel plate condenser filled with a dielectric constant ‘k’. 

 

When no dielectric present, then Gauss’s law is given by  

 Eo .dS  
q   

 

0 
 

 

  
 

E o ds  EO A 


 

q 

(Where E0 is the Electric filed without dielectric) 

 

0 
 

      

 q  

E o  (1)  

 


0 

A
  

 

When dielectric is placed between the plates of the condenser (see fig) the net charge 

within the Gauissian surface is q-q
1
 . Where q

1
 is the induced surface charge. Let E be 

the resultant field with in the dielectric. Then by Gauss’s law 
 

 E .dS  
q

 


 
q1

 0 

E ds  EA  
q

 


 
q1  

 0 

 q  q1
   

 

E      (2)  

 
 

 
0 A 

  
 

   
 

But dielectric constant k = E0 / E and E = E0 / K 

 

  q    
 

Therefore E     ( form equation 1)  

  
 

      
 

  
k

0 A   
 

Substitute E value in equation 2 

 

 q    q  q1
   q  q1

 
 

           
 

     
 

     

0 A 

  

0 A 

 

0 A 

 

 

k
0 A      
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